Рабочее и защитное заземление: описание, принцип действия и назначение, схемы подключения и отличия,

Какие виды систем заземления существуют и что такое защитное заземление?

Защитное заземление — это система, созданная для предупреждения воздействия электрического тока на человека, путём преднамеренного соединения с землёй корпуса и нетоковедущих частей оборудования, которые могут оказаться под напряжением. Системы заземления могут быть естественными и искусственными.

Что такое заземление и зачем оно нужно?

Заземляющие устройства представляют собой преднамеренное соединение проводниками электрического типа различных точек электросети.

Назначение заземления заключается в предотвращении воздействия электрического тока на человека. Ещё одно назначение защитного заземления — отведение напряжения с корпуса электроустановки через устройство заземления на землю.

Основная цель применения заземления — снижение уровня потенциала между точкой, которая заземляется и землёй. Тем самым понижается сила тока до наименьшего уровня и уменьшается количество поражающих факторов при соприкосновении с деталями электрических приборов и установок, в которых произошел пробой на корпус.

Что такое нейтраль?

Нейтраль — это нулевой защитный проводник, который соединяет между собой нейтрали электроустановок в трехфазных сетях электрического тока. Сфера использования — зануление электроустановок.

Понижающая подстанция, где находится трансформаторная установка, оснащена своим контуром заземления. Этот контур состоит из стальной шины и прутов, закопанных специальным образом в землю. К источникам потребления в электрощиток от подстанции проложен кабель, имеющий 4 жилы. Когда потребителю электроэнергии нужно питание от цепи трехфазного типа, то все 4 жилы должны быть подключены. Когда к жилам подключается разная нагрузка, в системе происходит смещение нейтрали, чтобы предотвратить это смещение, используется нулевой проводник. Он помогает симметрично распределить нагрузку на все фазы.

Что такое PE и PEN проводники?

PEN-проводник — это проводник, совмещающий в себе функции нулевого защитного и нулевого рабочего проводника. Он идет от подстанции и разделяется на PE и N проводники, непосредственно у потребителя.

PE-проводник — это защитное заземление, которое мы используем, например, в квартире в розетке с заземлением. PE-проводник используется для заземления устройств, установок и приборов, где уровень напряжения не превышает 1 кВ.

Данный тип заземления используется только для гарантии безопасности. Такое заземление обеспечивает непрерывное соединение всех открытых и внешних деталей. Механизм обеспечивает стекание тока на землю, которое появилось вследствии попадания электрического тока на корпус какого-либо устройства.

PEN-проводник (объединение нулевого защитного и нулевого рабочего проводника) применяется при использовании системы заземления типа TN-C.

Виды систем искусственного заземления

В классификации систем заземления есть естественные и искусственные типы заземления.

Системы заземления искусственного типа:

  • TN-S;
  • TN-C;
  • TNC-S;
  • TT;
  • IT.

Виды заземления — расшифровка названия:

  • T — заземление;
  • N — подсоединение проводника к нейтрали;
  • I -изолирование;
  • C — объединение опций функционального и нулевого провода защитного типа;
  • S — раздельное использование проводов.

Многих людей интересует вопрос о том, что называют рабочим заземлением. По-другому его называют функциональным. Ответ на данный вопрос даёт пункт 1.7.30 ПУЭ. Это заземлерие точек токоведущих частей электрической установки. Применяется для обеспечения функционирования электрических приборов или установок, а не в защитных целях.

Также многих волнует вопрос о том, а что такое защитное заземление. Это процесс заземления устройств с целью обеспечения электробезопасности.

Системы с глухозаземленной нейтралью системы заземления TN

К таким системам относятся:

  • TN-C;
  • TN-S;
  • TNC-S;
  • TT.

Согласно п. 1.7.3 ПУЭ TN-система — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.

TN включает в себя такие элементы, как:

  • заземлитель средней точки, которая относится к источнику питания;
  • внешние проводящие части устройства;
  • проводник нейтрального типа;
  • совмещенные проводники.

Нейтраль источника глухо заземлена, а внешние проводники установки подключены к глухозаземленной средней точке источника при помощи проводников защитного типа.

Сделать заземляющий контур можно только в электроустановках, мощность которых не превышает 1 кВ.

Система TN-C

В данной системе нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник. Они совмещены на всем протяжении системы. Полное название — Terre-Neutre-Combine.

Среди преимуществ TN-C можно выделить только легкий монтаж системы, который не требует больших усилий и денежных затрат. Для монтажа не требуется улучшение уже установленных кабельных и воздушных линий электропередачи, у которых есть всего 4 проводящих устройства.

  • возрастает вероятность получения удара током;
  • возможно появление линейного напряжения на корпусе электрической установки во время обрыва электрической цепи;
  • высокая вероятность потери заземляющей цепи в случае повреждения проводящего устройства;
  • такая система защищает только от короткого замыкания.

Система TN-S

Особенность системы заключается в том, что электричество поставляется к потребителям через 5 проводников в трехфазной сети и через 3 проводника в однофазной сети.

Всего от сети отходит 5 проводящих источников, 3 из которых выполняют функцию силовой фазы, а оставшиеся 2 — это нейтральные проводники, подсоединенные к нулевой точке.

  1. PN — нейтральный механизм, который задействован в схеме электрического оборудования.
  2. PE — глухозаземленный проводник, выполняющий защитную функцию.
  • легкость монтажа;
  • низкая стоимость покупки и содержания системы;
  • высокая степень электробезопасности;
  • не требуется создание контура;
  • возможность использовать систему в качестве устройства от защиты утечки тока.

Система TN-C-S

TN-C-S система предполагает разделение проводника PEN на PE и N в каком-то участке цепи. Обычно разделение происходит в щитке в доме, а до этого они совмещены.

  • простое устройство защитного механизма от попадания молний;
  • наличие защиты от короткого замыкания.
  • слабый уровень защиты от сгорания нулевого проводника;
  • возможность появления фазного напряжения;
  • высокая стоимость монтажа и содержания;
  • напряжение не может быть отключено автоматикой;
  • отсутствует защита от тока на открытом воздухе.
Читайте также:
Полировка автомобиля своими руками без машинки: как отполировать авто?

Система TT

TT разработана для обеспечения высокого уровня безопасности. Устанавливается на электростанциях с низким уровнем технического состояния, например, где используются оголенные провода, электроустановки, которые расположены на открытом воздухе или закреплены на опорах.

TT монтируется по схеме четырех проводников:

  • 3 фазы, подающие напряжение, смещаются под углом 120° между собой;
  • 1 общий ноль выполняет совмещенные функции рабочего и защитного проводника.
  • высокий уровень устойчивости к деформации провода, ведущего к потребителю;
  • защита от КЗ;
  • возможность использования на электроустановках высокого напряжения.
  • сложное устройство защиты от молний;
  • невозможность отследить фазы короткого замыкания электрической цепи.

Системы с изолированной нейтралью

В ходе передачи и распределения электрического тока на потребителей применяется трехфазная система. Это дает возможность обеспечить симметричность и равномерное распределение нагрузки по току.

Такое устройство создает режим, предусматривающий использование трансформаторной будки и генераторов. Их нейтральные точки не оснащены контуром заземления.

Изолированный тип нейтрали применяется в схеме питания при соединении вторичных обмоток трансформаторных установок по схеме треугольника и при отсутствии питания во время аварийный ситуаций. Такая сеть представляет собой замещающую цепь.

Изолированная нейтраль способствует пробиванию изоляционного покрытия при коротком замыкании и возникновению короткого замыкания на других фазах.

Система IT

Система IT с напряжением до 1000 В обеспечивает заземление через высокий уровень сопротивления и оснащена нейтралью источника питания.

Все внешние элементы электроустановки, которые выполнены из материалов, проводящих ток, заземляются. Среди преимуществ можно выделить невысокие показатели утечки тока во время однофазного КЗ электрической сети. Установка с таким механизмом может функционировать долгое время даже при аварийных ситуациях. Между потенциалами отсутствует разность.

Недостаток: защита от тока не срабатывает при замыкании на землю. Во время работы в режиме однофазного КЗ возрастает вероятность поражения током при прикосновении ко второй фазе установки.

Что такое короткое замыкание по-простому?

Какого цвета и как обозначаются провода ноля, фазы и земли в электрике?

УЗИП — что это такое, описание и схемы подключения в частном доме

Как правильно сделать контур заземления в частном доме — расчёт схемы и монтаж

Создание защитного заземления

Защитное заземление — это специальное электрическое соединение с контактом «земля» различных электроприборов, металлические элементы которых не находятся под напряжением, но могут проводить опасные токи при неправильной работе.

Основное назначение защитного заземления — повышение безопасности и исключение возможности поражения человека электрическим током (ПУЭ 1.7.29).


При правильно сделанном соединении, в ситуации с нарушением изоляции и появлении тока утечки, срабатывает УЗО, тем самым защищая человека, от поражения током при прикосновении к металлическим частям какой-либо техники (стиральные машины, электрические плиты и так далее).

Функции и отличия

Заземление имеет большой ряд назначений, а основной принцип действия защитного заземления — отвод электрического тока в землю от металлических поверхностей электрических приборов. Рассмотрим, для каких же целей применяется защитное заземление и в чем отличия от обычного заземления ?

Основная функция обычного, так называемого рабочего заземления — защита электроприборов от неустойчивой работы и сбоев, а также предупреждение внештатных ситуаций, таких как короткое замыкание.

Основная функция ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ — защита человека при возникновении аварийной ситуации, когда велика вероятность поражения электрическим током при соприкосновении с металлическими частями электроприборов.

Кроме того такой вид соединения:

  • соответствует регламенту ПУЭ (правила устройства электроустановок);
  • снижает помехи при работе электрической техники;
  • является отличной молниезащитой здания.

В современном доме/квартире просто необходимо проводить работы по прокладке заземляющего кабеля и его подключению к общему «контуру земли». Обусловлено это тем, что современные бытовые приборы обладают серьезными мощностными показателями, они способны потреблять большое количество энергии, а их корпусные детали, как правило, выполнены из металлов, которые, как известно, хорошо проводят электрический ток. Отсутствие заземляющей цепи грозит серьезными последствиями, в особенности при установке в помещении такой техники как:

  • стиральные машины;
  • холодильники;
  • электрические плитки;
  • водонагреватели и котлы;
  • микроволновые печи.

Прямое подключение через такую цепь позволяет избежать появления высокого напряжения на поверхностях этих электроприборов и снизить количество помех, возникающих при эксплуатации этой техники.

Заземляющая цепь в квартирах и частных домах

Далеко не все знают, что при работе той же микроволновой печи без подключения к «земле» возникает большое количество помех, вредно влияющих на организм человека. А в случае установки стиральной машины подобные «контуры» безопасности остро необходимы, так как при поломке агрегата и появлении протечек риск поражения человека электрическим током возрастает в разы!

Поэтому у большинства приборов такого класса часто имеется отметка на корпусе или же в инструкции о необходимости подключения к заземляющей цепи, зачастую без указания типа заземления. Лучше лишний раз перестраховаться и подключать такую технику через отдельную клемму на корпусе, в особенности если не указан метод проведения заземления.

Современная бытовая техника заведомо рассчитана на эксплуатацию с розетками имеющими «выход на землю», но далеко не всегда эти розетки, установленные в домах подключены к этому выходу. Особенно это касается старых зданий, без модернизированной электропроводки. Обусловлено это тем, что во времена строительства зданий (до 1998 года) были совершенно иные ГОСТы, регламенты и правила проведения электрических цепей, а у населения отсутствовала мощная электрическая техника, требующая отдельного заземления.

Однако позже ситуация изменилась и заземляющие проводники появились в распределительных общедомовых щитках. В частных же домах ситуация обстоит несколько иначе, заземляющая цепь может быть установлена, а может отсутствовать вовсе, все зависит от того, позаботился ли владелец или строительная компания об установке электропроводки соответствующей всем необходимым нормам или нет.

Читайте также:
Свайно-винтовой фундамент для загородного дома

Виды заземлений

Электропроводка и заземление в зданиях может быть нескольких типов:

  • типа TN-C (глухо заземленная нейтраль), подача напряжения через два провода — один из которых нейтральный, а второй находится под напряжением, ЗАЗЕМЛЕНИЕ ОТСУТСТВУЕТ, необходима его прокладка (возможна только в частном доме);
  • типа TN-S (используется трехжильный кабель) — ЗАЗЕМЛЕНИЕ ПРИСУТСТВУЕТ, возможна необходимость разводки проводки с заземлением в помещении;
  • типа TN-C-S (используется пятижильный кабель — 3 провода фаза, 4 провод — нулевой, 5 провод — защитное заземление, подключение к отдельной шине в щитке), ЗАЗЕМЛЕНИЕ ПРИСУТСТВУЕТ, возможна необходимость разводки проводки с заземлением в помещении.

Основными отличиями систем типа TN-C от систем TN-S (TN-C-S) является наличие отдельного заземляющего провода в системе TN-S (TN-C-S), у архаичных же систем TN-C отдельного заземления нет, оно выполнено вместе с нулем.

Отсутствует заземление, что делать

В случае, если дом старый, а электропроводка не модернизирована, то в электрической схеме такого здания отсутствует канал заземления. В такой ситуации нет возможности создания защиты металлических поверхностей приборов от электрического тока. Однако в данном случае все таки присутствует метод защиты электрических цепей при аварийных ситуациях, таких как короткое замыкание, он называется ЗАНУЛЕНИЕ.

В чем отличия? Если при защитном заземлении происходит защита металлических поверхностей и отвод тока в землю через общую шину, то при занулении канал «земля» какого-либо прибора или розетки осуществляется соединение этого канала с нулем (нулевым проводником электропроводки).

Основное отличие заключается в том, что в схеме с занулением при возникновении аварийной ситуации происходит отключение прибора, поверхности которого оказались под напряжением из-за «пробоя» изоляции, от электросети. Так, зануление не защищает полностью от поражения электрическим током, но минимизирует воздействие на человека за счет моментального отключения электричества.

Если в условиях многоквартирного дома отсутствует возможность установки заземления из-за использования проводки типа TN-C, то стоит использовать метод зануления. Если же присутствует возможность прокладки новой современной проводки, например, в частном доме, то необходимо проводить работы по созданию защитного контура заземления.

Заземляем сами

При прокладке заземляющего контура защиты в первую очередь необходимо выбрать тип схемы, по которой будут вестись работы. Опытные мастера рекомендуют выбирать схему типа TN-C-S. Её основное преимущество заключается в том, что оборудование имеет непосредственный контакт с землей. Контакт нейтрали и земли ведется одним проводником, а на входе в щиток разделяются на 2 отдельных. Данная схема обеспечивает надежную защиту, поэтому устанавливать УЗО нет необходимости, достаточно лишь простых автоматов. Однако согласно ПУЭ обязательно выполнить требования по механической защите общего контакта нейтрали и земли (PEN), а также создать дополнительное резервное заземление на опорах на расстоянии 200 м или 100 м.

Создать контур защитного заземления достаточно просто, если руководствоваться правилами перечисленными ниже. В первую очередь для создания контура необходимо выбрать схему защитного заземления, их существует несколько видов, самые надежные и удачные:

  • замкнутая (выполняется, как правило, по форме треугольника);
  • линейная.

В замкнутой схеме все заземляющие проводники вкопаны в землю, находятся на одной глубине и соединены между собой металлической перемычкой. Основное преимущество — работоспособность в случае разрыва (от коррозии или других воздействий) металлической перемычки.

В линейной же схеме проводники выстроены в одну линию и соединены перемычкой последовательно друг с другом. Данная схема чуть более проста в создании, но имеет недостаток — при повреждении перемычки из строя выходит вся система.

Создание контура заземления

Итак, для создания контура заземления нам понадобятся следующие инструменты и материалы:

  • Лопата.
  • Сварочный аппарат (обязателен).
  • Пила по металлу или болгарка.
  • Кувалда.
  • Пассатижи, гаечные ключи.
  • Металлический уголок/швеллер/П-образный профиль из нержавеющий стали длиной от двух метров (с площадью поперечного сечения ДО 150 мм²).
  • Металлические полоски длиной от 110 см, шириной 4 см, толщиной 4–5 мм.
  • Металлическая полоса необходимой длины (от места залегания до места контакта с домом), ширина 4 см, толщина 4–5 мм.
  • Крупные болты, гайки и шайбы (М8-М10).
  • Провод из меди с толщиной не менее 6 мм².

После того как все необходимое имеется в наличии можно приступать к монтажу защитного заземления. В первую очередь следует выбрать место, лучше всего выбрать такой участок земли, где редко находятся люди или животное, так как во время отвода электричества в почву может произойти поражение электрическим током. Лучше всего выбрать место на границе участка, на максимальном удалении от зоны постоянного посещения.

После чего необходимо выкопать узкую траншею глубиной 60–70 см от места контакта с домом до места отвода электричества. В месте отвода электричества необходимо выкопать соответствующую фигуру (в зависимости от выбранной схеме) со сторонами

1.2 м между проводниками.

Затем в каждом углу фигуры (у нас это треугольник) — вкапываются металлические уголки в землю на глубину 2 м и больше. К торчащим концам вкопанных проводников привариваются заготовленные заранее металлические пластины, к одному концу которой приваривается полоса-проводник, идущая непосредственно к месту контакта заземления с домом.

В месте контакта заземления к этой пластине монтируется провод из меди, который уже выходит из под земли и выводится в электрощиток.

Читайте также:
Полезная самоделка из обычных маленьких тисков

После выполнения этих работ траншеи обратно закапываются. На данном этапе работы по защитному заземлению можно считать законченными.

Видео по теме

Понятие и принцип действия защитного заземления

Работающие электрические приборы должны иметь заземление. В зависимости от цели оно может быть рабочим или защитным. Первое предназначено для корректной работы устройств, а второе – для защиты людей. Принцип действия одного и второго разный.

  1. Основные цели и задачи заземления
  2. Принцип защитного заземления
  3. Защита от попадания молнии
  4. Защита от импульсного перенапряжения
  5. Защита людей
  6. Отличие рабочего заземления от защитного
  7. Требования к защитному заземлению
  8. Бытовое заземление
  9. Работа заземления при неисправностях электрооборудования
  10. Как производится расчет параметров основных заземляющих элементов
  11. Установка заземлителей

Основные цели и задачи заземления

Заземление представляет собой заземлитель и заземляющие проводники, по которым ток стекает в грунт и нейтрализуется

Почва способна нейтрализовать электрический ток, так как степень ее напряжения равна нулю. Сопротивление – это основной показатель заземляющего устройства, по которому можно судить о его качестве и способности выполнять свое предназначение. Удельное сопротивление зависит от состава почвы, наличия в ней химических веществ – кислотных или щелочных, влажности, рыхлости. В зависимости от состава почвы может потребоваться использование какого-либо специального комплекта заземления или же полная замена грунта для корректной работы заземляющих устройств.

Заземление – это соединение какого-либо прибора, электрической установки или части сети с заземляющим устройством. Оно представляет собой заземлитель и заземляющие проводники, по которым ток стекает в грунт и нейтрализуется.

Заземлителей может быть несколько. В распределенной схеме они располагаются по периметру объекта, электрическую сеть которого необходимо обезопасить. Проводящая часть (заземлители) обычно выполняются из металла. К ним подводятся заземляющие электроды, которые имеют непосредственный контакт с почвой.

Устройство контура заземления

Заземляющее устройство монтируется по контуру. Контур заземления – это несколько проводников электродов, которые забиваются в грунт. Их длина – 3 метра, располагаются они на небольшом расстоянии друг от друга. В качестве соединения применяется горизонтальная металлическая полоса, которую укладывают в почву на небольшую глубину – до 1 метра. Соединение с электродами осуществляется с помощью обычной сварки. В специальных заземляющих комплектах части оборудования соединяются резьбой, что никак не влияет на рабочие свойства.

Рабочее заземление необходимо в следующих случаях:

  • Защита оборудования от накопления статического электричества. Процессы, происходящие в природе, например, молнии, могут влиять на ток, протекающий в цепи, в результате чего оборудование может быть повреждено. Электроды, установленные в грунте, отводят излишки тока.
  • Защита сети от замыканий.
  • Защита от перенапряжения.

Пример рабочего заземления – молниеотвод, который присоединен к электродам. Особенно актуально в генераторах, трансформаторах.

Принцип защитного заземления

Защитное заземление – это комплекс мер, которые направлены на защиту оборудования и людей, которые с ним работают. Используется для устранения электромагнитных помех, возникающих из-за работающего рядом устройства, а также для нейтрализации помех при коммутации в цепи питания.

Защита от попадания молнии

Схема защиты дома от молний

Воздушная среда – это участок с большим сопротивлением, но разряд имеет мощность, превосходящую данное сопротивление, поэтому пробивает его. По пути следования из верхних слоев атмосферы к земле молния выбирает участки с наименьшим сопротивлением – мокрые участки, стены, деревья и капли воды. Этим объясняется тот факт, что разряды часто попадают в дерево – оно имеет сопротивление меньше, чем воздух вокруг. При попадании в здание ток также проходит по участкам с наименьшим сопротивлением – это металлические трубы, электрические приборы или их металлические детали, влажные стены. Если устройство не имеет заземления, прикосновение к нему в момент прохождения заряда может быть смертельным.

При установке молниеотвода на крыше заряд попадает в него, а далее движется в землю и нейтрализуется. Важно, чтобы токи не распространялись внутрь объекта, поэтому материалы, которые используются для обустройства заземления, имеют низкое сопротивление. По правилам оно не должно превышать показатель в 4 Ом. Сам молниеотвод должен быть соединен с электродами в грунте.

Защита от импульсного перенапряжения

Устройства защиты от импульсных перенапряжений

Электронное оборудование чувствительно к скачкам напряжения или работающим в их радиусе мощным электрическим установкам. Повредить электронику может внезапно возникший разряд молнии вблизи.

В качестве примера: во время грозы может возникнуть избыточный заряд в медном кабеле, которыми соединены дома и по которым проходит ток. Заряд при увеличении его размера способен разрушить кабель. В этом случае на линии питания ставится УЗИП – устройство защиты от импульсного перенапряжения, чтобы избыток заряда стравливался в грунт.

Защита людей

Корпуса приборов, все металлические элементы способны проводить ток. Если коснуться незаземленного прибора, в котором накопилось статическое электричество, можно получить сильный удар. Это отразится прежде всего на сердечно-сосудистой и нервной системе. Снизить удар помогает резиновая обувь, прорезиненные перчатки, абсолютно сухое помещение, но люди редко ходят по квартире или офису в резиновых сапогах. Подключение третьего провода к корпусу приборов, а затем соединение его с электродами позволяет утилизировать в грунт лишний ток.

В старых частных и многоквартирных домах заземляющие мероприятия не проводились, поэтому все электрические приборы представляют потенциальную опасность для людей.

Самодельные устройства могут выглядеть следующим образом: к корпусу прибора подсоединен провод, который выводится на улицу и соединяется с вбитым в землю металлическим изделием (труба, уголок, ведро, арматура). Эти изделия являются хорошими проводниками тока, в отличие от человеческого тела, поэтому ток выбирает металл и уходит в грунт.

Отличие рабочего заземления от защитного

Рабочее и защитное заземление по правилам техники безопасности не должно совмещаться водной схеме. При атмосферных разрядах электрические приборы могут повредиться, при этом защитное заземление не сработает.

Читайте также:
Плесень в стиральной машине: как избавиться и очистить, 10 лучших средств

В схеме функционального (рабочего) заземления все токонесущие конструкции соединяются с электродами, установленными в грунте. Для корректной работы рабочего заземления используются также предохранители, которые принимают напряжение на себя и выходят из строя.

Рабочее заземление оборудуется в том случае, если к приборам прилагается указание производителя и требования, которые защищают данное устройство.

К защитному заземляющему устройству предъявляется больше требований, так как оно имеет более важные задачи: сохранение жизни людей.

Назначение рабочего заземляющего устройства Назначение защитного заземления
Большая мощность приборов Трехфазные приборы мощностью менее 1 кВт
Электронное чувствительное оборудование Одно- и двухфазные устройства, не имеющие контакта с грунтом
Медицинские приборы Техника мощностью более 1 кВт
Электронная техника, которая является носителем важной информации В схемах с предохранителями и нулевым защитным проводником

Самое надежное заземление предусмотрено в схеме электросети дома. Кабели, которые подходят к каждой розетке, должны быть трехжильными. Третья жила соединяется с землей и отводит статическое электричество, а также предотвращает короткие замыкания и попадание молнии внутрь здания.

Требования к защитному заземлению

Чтобы заземляющие установки выполняли свои функции, они должны соответствовать определенным параметрам и указаниям производителя оборудования.

Нюансы, которые влияют на функционал:

  • Сопротивление грунта из-за его физико-химических особенностей. Лучше всего проводит ток влажная глина, графитовая крошка, торф, солончаки или морская вода. Хуже – сухой песок или твердые породы – гранит, щебень, кварц, асфальт, бетон.
  • Площадь контакта заземлителя с почвой. Чем больше площадь, тем более благоприятные условия создаются для перетекания тока, тем быстрее это происходит. Увеличить площадь можно, установив большее количество электродов по контуру здания. В этом случае их соединяют вместе стальной пластиной в единое целое. Если увеличить размер одного электрода, общая площадь также увеличится. Увеличить площадь помогает установка вертикального металлического контура, если нижние слои грунта имеют большее сопротивление, чем поверхностные.

Поскольку добиться идеального сопротивления почвы трудно, устройства создаются исходя из ее характеристик. Для каждой электрической установки существуют свои нормы сопротивления заземлительных устройств. Например, для электрической подстанции с напряжением более 100 кВт сопротивление не должно быть больше 0,5 Ом, а для домашней сети с системой ТТ, а также применением автоматического отключения – до 500 Ом.

Необходимо обязательно обрабатывать сварные швы заземления от коррозии

Заземлители из металла не должны покрываться лакокрасочными материалами. Иногда в качестве заземляющего устройства используется подземная часть здания с металлическими конструкциями – электропроводящий бетон с арматурой внутри. Нельзя использовать газовые металлические трубы для решения проблемы заземления.

Согласно Правилам устройства электроустановок заземлению подлежат:

  • Сети, напряжение которых выше 380 В.
  • Особо опасные и наружные установки.

Части оборудования, подлежащие занулению и заземлению:

  • Корпуса электрического оборудования.
  • Вторичная трансформаторная обмотка.
  • Приводы электрических приборов.
  • Распределительные щиты, каркасы шкафов.
  • Металлические конструкции оборудования.
  • Железная оболочка кабеля.

Если напряжение не превышает 42 В переменного тока или 110 В постоянного, заземление не требуется.

Бытовое заземление

Заземление ванны в квартире

Большая часть несчастных случаев в бытовых условиях связана с касанием прибора, который имеет повреждение изоляции. Тело человека в данном случае является проводником тока. Электрические варочные плиты, стиральные и посудомоечные машины, радиаторы отопления, микроволновки, бойлеры, ПК, мойки для посуды – все это металлические конструкции, которые хорошо проводят ток и без заземления могут причинить вред здоровью.

Короткое замыкание – это соприкосновение фазного и нулевого провода в сети, что приводит к срабатыванию аварийной защиты и отключению прибора от питания. Чаще всего происходит не короткое замыкание, а утечка тока, который накапливается в корпусе бытового оборудования. Это может привести к поражению электричеством.

Для безопасности человека необходимо устанавливать розетки с заземляющими контактами. К розетке должен быть подведен трехжильный кабель. При двухжильной и трехжильной системе заземление оборудуется по-разному – от распределительной коробки или электрического щитка.

В качестве заземлителя нельзя использовать газовые, водопроводные или трубы централизованного отопления.

Работа заземления при неисправностях электрооборудования

Под неисправностью оборудования подразумевают повреждение изоляции и возникновение фазы в корпусе прибора. Если части оборудования находятся под напряжением, но не имеют защиты в виде заземления и УЗО, человек, не подозревающий об опасности, может получить удар током.

Во втором варианте утечка тока может быть не значительной, устройство защиты оборудования не среагирует на напряжение и не отключит прибор. Человек может получить незначительный удар.

Если корпус не заземлен, но УЗО установлено, оно сработает через 0,02 секунды после прикосновения человека к корпусу прибора. Этого времени не достаточно для нанесения вреда здоровью.

Самой эффективной с точки зрения безопасности схемой является наличие заземления и УЗО. При возникновении утечки тока и переходе его в грунт УЗО реагирует и отключает прибор.

Как производится расчет параметров основных заземляющих элементов

Расчет параметров заземляющего устройства выполняется по формулам. Исходными элементами являются:

  • сопротивление грунта на данном участке;
  • длина, толщина, диаметр электродов, а также их количество.

На практике во всех случаях бывают расхождения с намеченным планом работ, так как показатель почвы необходимо анализировать более точно. Сделать это практически невозможно: на 100 квадратных метрах необходимо пробурить около 100 мини шахт глубиной до 10 м, чтобы оценить слои почвы, ее состав и включения элементов – глины, известняка, песка и других компонентов.

Установку заземляющих устройств проводят по главному принципу заземления: наличие запаса прочности, имея усредненные значения параметров. Чем ниже получается сопротивление, тем лучше для всех электрических приборов и людей.

Установка заземлителей

Вертикальные электроды более эффективно выполняют свои функции, так как их можно установить на большую глубину. При горизонтальной укладке на небольшую глубину сопротивление увеличивается, особенно в зимний период, когда верхние слои грунта промерзают.

Читайте также:
Погружной насос или насосная станция что выбрать

Для электродов применяют штыри, длина которых более 1 метра (обычно 1,5 м). Такие конструкции легко забить в грунт с помощью обычного молотка, соединение выполняется в горизонтальной плоскости не менее 0,5 м в глубину.

Устройство, принцип работы и схемы защитного заземления

Вне зависимости от эксплуатационных характеристик, электрифицируемое здание должно иметь качественно организованную систему защитной электробезопасности. Защитное заземление позволяет создать такую систему.

Этот тип заземления характеризуется соединением определенных элементов электроустановки с ЗУ (заземляющим устройством) и ориентирован на уменьшение показателей напряжений прикосновения и шага, возникающих при замыкании циркулирующих токов на корпусах электрооборудования.

Назначение и устройство защитного заземления

Устанавливается такой тип заземляющего устройства для защиты человека от поражения электрическим током при замыкании электрической цепи вследствие различных причин. Самая распространенная причина поражения током — короткое замыкание фазы на нетоковедущие элементы электроустановки.

Согласно материалам нормативной документации ПУЭ (глава 1.7), в зависимости от выполняемой функции существует два вида устройства заземляющей системы: рабочее (функциональное) и защитное заземление.

Функциональный тип применяется чаще для защиты производственных объектов. Посредством рабочих заземляющих устройств реализуется надежная эксплуатация оборудования электроустановки. Эффективность как рабочего, так и защитного устройства напрямую зависит от правильного выбора конфигурации заземляющих элементов и четкого производства электромонтажа.

Основным элементом системы выступает контур заземления. Он состоит из металлических заземлителей (электродов). Функциональность всей системы зависит от возможности этих заземлителей рассеивать ток. Монтировать заземляющие элементы необходимо с учетом множества факторов, напрямую влияющих на основной показатель эффективности заземлителей, — значение их сопротивления.

Следует помнить! При создании заземляющего устройства дома или квартиры важный момент — характеристика внутренней электропроводки объекта. Провод должен быть трехжильный, с фазой, нулем и заземлением.

Монтаж устройства защитного заземления востребован практически повсеместно.

Заземляющая система: область применения и принцип работы

При правильной организации заземляющей системы защиты должны быть реализованы такие эксплуатационные принципы:

  1. Образование электрической цепи, обладающей низким сопротивлением, при коротком замыкании. Электрический ток беспроблемно пойдет по этой магистрали. Реализуется обеспечение электрической безопасности пользователя. При случайном прикосновении человека к бытовому прибору во время пробития фазы на корпусе устройства не будет потенциально опасного напряжения.
  2. Обеспечение защиты от индукционных токов. Проявляться такие типы токов могут вследствие прямого удара молнии, при этом образуется электромагнитная и электростатическая индукция.

Учитывая значимость названных выше принципов действия системы, защитное заземление широко применяется в:

  1. Электрической сети напряжением менее 1 кВт:
  • с переменным током трех трехфазных проводников с изоляцией нейтрали;
  • с переменным током двух однофазных проводников, которые изолированы от земли;
  • с постоянным током двух проводников при наличии изоляции обмотки источника тока.
  1. Электросети напряжением свыше 1 кВт. Возможен любой режим точек обмоток источника питания постоянного и переменного тока.

Помните! Функциональность защитной системы будет надлежащего уровня только при наличии сети с изолированной нейтралью.

Заземление — это комплексная система. Все этапы в ней взаимосвязаны и влияют на надежность ее последующей эксплуатации. Важнейшая задача начального этапа производства — выбор конфигурации заземлителей.

Классификация заземляющих устройств

В соответствии с Правилами устройства электроустановок (ПУЭ), защитное заземление может быть реализовано с использованием заземлителей двух типов — естественных или искусственных. Заземляющие элементы этих двух категорий имеют определенные структурные отличия и особенности монтажа:

  1. Естественные заземляющие устройства. Такие заземлители могут быть представлены посредством:
  • объектов сторонних проводящих частей, которые имеют прямой контакт с грунтом;
  • объектов, контактирующих с почвой через специальную промежуточную токопроводящую среду.

Самыми распространенными конструкциями такого типа заземлителей выступают:

  • металлоконструкции зданий и фундаментов;
  • металлические оболочки проводников;
  • обсадные трубы.

Подключать элементы этой категории заземлителей необходимо минимум в двух местах.

Важно! Запрещено применять в качестве естественных заземляющих элементов: трубы теплотрасс; газопроводы; трубопроводы горючих жидкостей и горячего водоснабжения; оболочки подземных проводов с алюминиевой основой.

  1. Искусственные заземлители. Подразумевается специальное производство таких конструкций. В качестве материалов для искусственного создания защиты применяют:
  • определенного размера стальные трубы;
  • сталь полосовую толщиной свыше 4 мм;
  • сталь прутковую.

Важно знать! Большой популярностью пользуются искусственные заземлители глубинного типа. Электроды таких конструкций оцинкованные или омедненные. Преимущества — малозатратность производства и долговечность элементов.

Специфические различия искусственных и естественных устройств заземления обязательно учитываются при производстве расчетов, определяющих их оптимальную конфигурацию.

Как производится расчет параметров основных заземляющих элементов

На основании результатов подобных расчетов проектируется чертеж заземляющего устройства объекта.

Важно! Устройство, смонтированное в соответствии со всеми расчетными данными схемы заземления, позволяет добиться максимальной эксплуатационной эффективности всего комплекса защитного заземления.

Основа вычислений — допустимые пределы напряжения шага и прикосновения. На их основании рассчитывается конфигурация (размер, количество) заземлителей и принцип их размещения.

Выполняются расчеты на основании таких данных:

  1. Описание характеристик конкретного электрического оборудования: тип установки; основные структурные элементы прибора; рабочее напряжение; возможные варианты, позволяющие осуществить заземление нейтралей как трансформирующих, так и генерирующих устройств.
  2. Конфигурация заземлителей. Такие данные необходимы для определения оптимальной глубины погружения электродов.
  3. Информация о проведенных исследованиях по измерению удельного сопротивления грунта на конкретной территории. Дополнительно учитываются климатические сведения зоны, на которой обустраивается система.
  4. Информация о пригодных естественных элементах заземления, которые можно использовать в работе. Необходимы данные о реальных значениях растекания токов у этих объектов. Получить их можно путем специальных измерений.
  5. Результат стандартного вычисления точных показателей расчетного замыкания тока на почве.
  6. Расчетные значения нормативной стандартизации допустимых характеристик напряжений по ПУЭ.
  7. Показатели сопротивления сезонного промерзания слоя грунта, в период высыхания и промерзания. Учет таких значений необходим для расчета заземляющих элементов, которые располагаются в однородной среде. Применяются специальные стандартизированные коэффициенты.
  8. При необходимости монтажа сложной группы заземлителей, состоящей из нескольких элементов, необходимы сведения всех потенциалов, которые будут наведены на монтируемые электроды. Для этого нужны данные о значениях сопротивления всех слоев грунта.
Читайте также:
Препарат Крот для удаления засоров и профилактики труб: Преимущества + Фото и Видео

Важно! Если система будет размещаться в двух слоях грунта, учитывается показатель сопротивления каждого из них. Это необходимо для определения точных данных о мощностных параметрах верхнего слоя почвы.

Принцип расчета сопротивления заземлителей

Способов расчета характеристик основных заземляющих элементов достаточно много, но основной параметр у таких вычислений один — показатель сопротивления. Оптимальное его значение определяется посредством данных нормативной регламентации ПУЭ. Реализовать надежное защитное заземление объекта невозможно без расчета сопротивления его основных элементов.

К примеру, необходимо определить сопротивление заземления для электрооборудования напряжением свыше 1 кВт, с изолированной нейтралью. В соответствии с профильными данными документации ПУЭ 1.7.96, необходимо воспользоваться формулой R≤250/I, где:

  • I — показатель расчетного тока заземления;
  • R — показатель сопротивления заземляющего устройства, который не должен превышать 10 Ом.

В соответствии с ПУЭ (1.7.104), при учете нормативных сведений показателей тока прикосновения (для примера подойдет — 50 В), формула видоизменяется: R≤U/I, где U — это ток прикосновения (50 В).

Важно! При изолированной нейтрали, как правило, не требуется доравнивать показатель сопротивления ниже четырех Ом. Однако идеальным показателем сопротивления заземляющей системы считается 0. Основная задача, к которой сводится производство всех профильных расчетов, неизменна — достичь максимально низкого сопротивления системы.

Помимо производства расчетов параметров, важный момент при производстве заземления — выбор схемы подключения устройства.

Схемы заземления дома

Одним из основных элементов, необходимых для обеспечения электрической и пожарной безопасности объекта, является защитное заземление, поэтому закономерно, что грамотное технологическое производство такой системы – первостепенная задача. Добиться необходимого результата решения этой задачи невозможно без правильного выбора схематического варианта соединения и подключения заземляющих элементов.

Помните! Каждый элемент, при помощи которого реализуется защитное заземление, имеет схематическое обозначение. Для того чтобы выбрать оптимальный вариант схематического обоснования подключения такой системы, человеку нужно разбираться как в буквенных, графических, так и в цветовых чертежных обозначениях.

Чаще на практике применяются два вида подключения — схемы TN-C-S и TT. Отличия в проектировании схем:

  1. Схема TN-C-S. При организации защитного заземления объекта по данной схеме, предусмотрена реализация следующих моментов:
    • роль защитного и нулевого (рабочего) проводника выполняет один кабель (PEN);
    • локализация — участок электросети от трансформатора и до ГЗШ (главной заземляющей шины). Уже на ГЗШ провод PEN разделяется на рабочий нулевой (N) и защитный (PE).
      Цифрой 1 на картинке обозначено заземление источника, а цифрой 2 – заземляемый объект (дом).

Важно! При выборе схемы TN-C-S в качестве основы производства заземляющих работ важно учесть наличие глухозаземленной нейтрали. Получается, что ГЗШ дома соединяется с заземлением самого трансформатора, питающего объект.

    Схема TT. Прежде чем применить эту схему, необходимо аргументировать отказ от использования TN-C-S системы. Предусмотрена обязательная реализация нормативных требований, установленных к системе TT, а именно:

  • производится независимое подключение элементов, исключается соединение с нейтралью трансформатора;
  • заземлитель всех корпусов электрооборудования дома не зависит от аналогичного элемента источника питания;
  • в электрической проводке дома обязательно применяется УЗО (устройство защитного отключения).

Цифрой 1 на картинке обозначено заземление источника; цифрой 2 — дом, а 3 — это само устройство заземления дома.

Важно! В схеме TT полностью отсутствует организация защиты пользователя при утечке тока во время повреждения изоляции. Следовательно, монтировать УЗО для электрической проводки, реализованной по ТТ схеме, — обязательно.

В связи со значительным затруднением производства заземляющих работ по схеме TT, большинство объектов заземляются посредством TN-C-S системы.

Заземление — важный элемент обеспечения пожарной безопасности здания и электробезопасности его жильцов. Начинать работы по его созданию, руководствуясь лишь общими понятиями определения, что такое защитное заземление, не стоит. Нужно изучить теоретические и практические особенности устройства электрозащитной системы, разбираться в производстве расчетов ее параметров и уметь произвести измерение величины ее сопротивления после монтажа. При отсутствии навыков и необходимого оборудования следует доверить выполнение такой работы профильным специалистам.

Защитное и рабочее заземление

В процессе эксплуатации электрооборудования возникает необходимость в использовании заземляющих устройств. В зависимости от назначения, может использоваться защитное и рабочее заземление. В первом случае обеспечивается безопасность персонала, работающего на электроустановках, а во втором случае речь идет о нормальной работе устройств в обычном и аварийном режимах. Оба заземления различаются между собой и не могут быть использованы совместно. Для того чтобы лучше понять назначение и принцип действия, нужно подробнее рассмотреть каждое из них.

Что называется защитным заземлением

Устройств защитного заземления выполняется путем преднамеренного электрического соединения с землей металлических частей, к которым не подведен электрический ток и которые могут неожиданно оказаться под напряжением.

Главной функцией защитного заземления считается надежная защита людей от поражения током в случае соприкосновения с металлическими нетоковедущими частями, которые оказываются под напряжением по разным причинам, в основном, из-за повреждения изоляции.

Защитное заземление не следует путать с молниезащитой, рабочим и повторным заземлением, нулевым защитным проводником. Его действие в первую очередь направлено на снижение до безопасного значения напряжений шага и прикосновения, образующихся при замыкании на корпус. Это достигается снижением потенциала заземленного оборудования за счет уменьшения сопротивления заземляющего устройства. Одновременно выравниваются потенциалы основания, где находится человек и самого заземленного оборудования.

Защитное заземление используется в следующих областях:

  • В трехфазных сетях переменного тока, напряжением до 1 кВ с изолированной нейтралью.
  • В однофазных двухпроводных сетях переменного тока, изолированных от земли, с напряжением до 1 кВ.
  • В двухпроводных сетях постоянного тока, в которых изолирована средняя точка обмоток источника тока.
  • В сетях переменного и постоянного тока с любыми режимами обмоток источника тока при напряжении более 1 кВ.

Непосредственное соприкосновение с землей или ее эквивалентом осуществляется с помощью заземлителей. Они разделяются на два основных типа:

  1. Искусственные заземлители. Применяются только в целях заземления. Они изготавливаются из различных стальных конструкций и не должны окрашиваться. Для защиты от коррозии может использоваться оцинкованное покрытие, увеличенное количество заземлителей, специальная электрическая защита. В некоторых случаях в качестве заземлителя может использоваться электропроводящий бетон.
  2. Естественные заземлители. С этой целью используются электропроводящие части сетей и коммуникаций в зданиях и сооружениях, находящиеся в соприкосновении с землей. Заземление электроустановок рекомендуется выполнять в первую очередь из естественных заземлителей. Следует использовать трубы водопровода и системы отопления, конструкции зданий и сооружений из металла и железобетона, рельсовые пути, свинцовые оболочки кабелей и т.д. Нельзя использовать трубопроводы, по которым подаются горючие жидкости, газы или смеси.

Что называется рабочим заземлением

Рабочим заземлением считается преднамеренное соединение с землей определенных точек, имеющихся в электрических цепях. В первую очередь, это нейтральные точки генераторных и трансформаторных обмоток. В качестве соединений применяются надежные проводники, а также специальное оборудование в виде пробивных предохранителей, разрядников, резисторов и т.д.

Главным предназначением рабочего заземления является создание препятствий сбоям и замыканиям, поддержание системы в случае возникновения аварийной ситуации. Под его воздействием происходит снижение электрического напряжения в деталях и частях механизма, непосредственно находящихся под напряжением. Принятые меры способствуют локализации электрических сбоев, их отводу и недопущению дальнейшего распространения.

В соответствии с правилами техники безопасности, запрещается совмещать защитное и рабочее заземление. Это связано с тем, что различные токи помех, например, атмосферные электрические разряды, могут наложиться на токи, протекающие в однопроводных цепях. Это может привести к нарушениям внешних связей устройств и даже повреждениям аппаратуры. Кроме того, подобные совмещения могут сделать неэффективной защиту от напряжения. В случае аварийных ситуаций она будет работать в качестве рабочей или не будет функционировать вообще.

Сопротивление рабочего заземления должно быть не более 4 Ом. Такое ограничение связано с величиной напряжения, возникающего относительно земли на нулевом проводе, в процессе протекания тока замыкания на землю через рабочее заземление. Это особенно актуально при замыкании трансформаторной обмотки высокого напряжения на обмотку низкого напряжения.

Что такое защитное заземление

Зануление и заземление электроустановок

Что такое заземление

Системы заземления TN-C, TN-S, TNC-S, TT, IT

Чем отличается защитное заземление от рабочего?

Электрический ток не виден глазом, не имеет запаха, его нельзя определить на слух. Поэтому приборы, работающие от электрического тока, относятся к электроустановкам повышенной опасности. Для защиты обслуживающего персонала от поражения электрическим током применяется защитное заземление. А для обеспечения нормальной работы оборудования в штатном или аварийном режимах используется рабочее заземление. Для того чтобы понять разницу, необходимо разобраться, чем отличается защитное и рабочее заземление. Об этом мы и поговорим далее.

  • Защитное заземление
  • Устройство
  • Рабочее заземление
  • Отличия
  • Заключение

Защитное заземление

Основное назначение защитного заземления (ЗЗ) состоит в том, чтобы защитить обслуживающий персонал от поражения электрическим током в аварийной ситуации. В случае, когда на металлической нетоковедущей поверхности электроустановок внезапно появляется опасное напряжение.

Это может произойти в результате пробоя изоляции или обрыва провода и его касании корпуса. В результате человек подвержен опасному напряжению.

На рисунке снизу показана схема защитного заземления. Из него понятно устройство и принцип работы ЗЗ.

Защитное заземление (ЗЗ) – это преднамеренное соединение металлических частей корпуса оборудования с землей, заземлителем или его аналогом. Основная задача состоит в том, чтобы обезопасить обслуживающий персонал от травм, вызванных поражением электрическим током.

Для расчетов необходимо знать, сколько Ом должно иметь защитное устройство (ЗУ). Его значение в основе расчета не должно превышать 4 Ом.

ЗЗ используется в следующих случаях:

  • В трехфазных сетях с изолированной нейтралью переменного напряжения до 1 кВ.
  • В однофазных сетях переменного тока.
  • В сетях постоянного тока с изолированной средней точкой обмоток источника тока.
  • В сетях переменного и постоянного тока с любым режимом обмоток источника при напряжении выше 1 кВ.

Устройство

С помощью заземлителей производят непосредственное соединение с землей или ее аналогом. Для этого применяются естественные и искусственные заземлители:

  • В этих целях используют искусственные заземлители. Они представляют собой металлические штыри, забитые в землю. Окрашенные штыри запрещается применять, для защиты от коррозии применяют оцинкованный металл. В некоторых случаях забивают медные штыри или закапывают медную пластину. Допускается использовать токопроводящий бетон.
  • В качестве естественных заземлителей рекомендуется использовать электропроводящие части, имеющие непосредственное соприкосновение с землей. Часто для этих целей на дачах применяют водопроводные трубы. К заземлителям относятся – металлические части зданий и сооружений, рельсовые пути, свинцовые оболочки кабелей и т.п. При этом категорически запрещено применять в качестве заземлителей газопроводы, нефтепроводы и другие трубопроводы по которым транспортируются горючие смеси и газы.

На рисунке снизу показан вариант защитного заземления в частном доме.

Вариант защитного заземления в частном доме

Кроме этого, применяется защитное зануление. Его широко применяют для обеспечения электробезопасности в жилых и общественных зданиях.

Защитное зануление – это специальное электрическое соединение открытых проводящих частей не находящихся в нормальном состоянии под напряжением, с глухозаземленной нейтралью генератора или трансформатора, в трехфазных сетях, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника постоянного тока, создаваемого с целью электробезопасности людей.

На рисунке снизу показана схема подключения защитного зануления при наличии и без заземления для однофазной сети, применяемой в жилых домах для подключения бытовых приборов.

На рисунке снизу показана схема зануления оборудования в цехах на производстве.

Рабочее заземление

Предназначено для обеспечения нормальной работы оборудования во всех режимах работы. Это относится и к аварийным ситуациям.

Рабочее или функциональное заземление — это заземление точки или точек токоведущих частей оборудования, предназначенное для обеспечения работоспособности электрооборудования, не в целях электробезопасности.

На рисунке снизу показана схема из учебника рабочего заземления для различных сетей.

Функциональным назначением данной опции является поддержание работоспособности оборудования и защитных аппаратов в штатном и аварийном режимах. Зачастую она используется для срабатывания специальных устройств.

Это могут быть плавкие предохранители, резисторы и т.п. Основным назначениям функции является препятствие сбоям, их локализации и препятствие их распространению.

Правила техники безопасности запрещают совмещать защитное и рабочее заземление. Что связано с тем, что электрические атмосферные помехи, например, от грозозащиты зданий и сооружений, могут совместиться с токами сети.

Это может привести к сбоям оборудования, например, компьютеров, сложной электронной техники и т.п. А так же к выходу оборудования из строя.

Кроме этого, такое совмещение сделает защиту от напряжения не эффективной. А в аварийной ситуации она вообще перестанет функционировать.

В качестве заземлителей применяют металлические стержни. Их должно быть не менее двух, и расстояние между ними составляет 1 м.

При этом необходимо соблюдать следующие правила, определяемые по ПУЭ:

  1. В качестве рабочего заземления запрещается использовать трубопроводы в любой ситуации.
  2. Запрещается выводить кабель наружу и подключать к шине в месте неподготовленном для этого. Так как плохой контакт не обеспечит надежной защиты, а в процессе эксплуатации он ухудшится из-за коррозии металла.
  3. Последовательное подключение оборудование к шине заземления категорически запрещается.
  4. Запрещено к одной контактной площадке на шине заземления подсоединять несколько кабелей от оборудования.

На вышеприведенном рисунке показан пример металлосвязи с электрооборудованием.

Отличия

Определить разницу в этих заземляющих устройствах не посвященному довольно сложно. Оба вида защиты используют одинаковые защитные устройства. Т.е. они выполняются по единой методике. Разница заключается в их назначении.

Отличие рабочего от защитного заземления заключаются в следующем:

  • Рабочее ЗУ обеспечивает защиту оборудования и приборов, подключенных к электрическим сетям от выхода из строя.
  • Для этого допускается использовать грозозащиту и системы выравнивания потенциалов, подключенных к местному контуру.
  • Оно не предназначено для защиты людей от поражений электрическим током.

Защитное заземление к работе оборудования никакого отношения не имеет. Оно служит для обеспечения безопасности работающего персонала. Характерной особенностью является то, что все металлические детали корпусов, шкафов, щитов учета на опоре и т.п. должны быть заземлены.

Заземлителями могут быть искусственно созданные конструкции или проложенные в земле трубы, экраны кабелей, на ЖД для этого можно использовать рельсы и т.п. Кроме трубопроводов транспортируемых взрывоопасные газы и жидкости. Для обеспечения работоспособности оборудования применяют рабочее зануление.

Оборудование и его части, подлежащие обязательному занулению или заземлению:

  1. Электроприводы электрических аппаратов.
  2. Корпуса электрических машин, асинхронных двигателей, понижающих трансформаторов, технологического оборудования и т.д.
  3. Испытательные установки, обмотки измерительных преобразователей.
  4. Металлические остовы и корпуса передвижных электроприемников, таких как краны, тельферы и т.д.
  5. Все открытые части работающего в данный момент оборудования.

Если невозможно осуществить подключение оборудования к занулению или заземлению, согласно требованию ПУЭ, применяют электроприемники на пониженное напряжение 42 Вольта. Например, для подключения механизмов в помещениях с повышенной опасностью, например, в шахте.

Заключение

Рабочее ЗУ и зануление предназначено для корректной работы оборудования в электроустановках в различных режимах. Оно не предназначено для обеспечения безопасности людей.

Защитное заземление и зануление используется для защиты человека от поражения электрическим током при аварийных ситуациях. Когда на корпусе возникает опасное напряжение, происходит защитное отключение напряжения. Кроме этого, происходит уравнивание потенциалов. В результате чего уменьшается вероятность поражения человека шаговым напряжением.

Назначение и отличительные свойства труб для канализации разных цветов


Совсем недавно выбор трубы для канализации был простейшей задачей, потому что он ограничивался материалами. Производили только сталь и чугун. Кроме того, все они были лишь 2 цветов: серые и чёрные.
Однако с развитием технологий их стало куда больше. Из чего их только не делают, наиболее популярны:

  • полипропиленовые;
  • поливинилхлоридные;
  • полиэтиленовые.

Такое разнообразие очень выгодно, но сделать свой выбор стало значительно труднее. Кроме этого трубы стали выпускать различных цветов, это тоже в некотором роде усложняет выбор.

Например, человек, впервые столкнувшейся с необходимостью замены трубопровода пришёл в магазин. Раньше он бы увидел обыкновенную серую трубу, а вот сейчас перед ним огромный выбор, к тому же разных расцветок. Каково предназначение расширенной цветовой гаммы?

От чего зависит цвет канализационных труб


Производители отнюдь не пытаются усложнить нам выбор, напротив, они хотят сделать его проще. Тон трубы меняется в зависимости от того, для чего она предназначена.

Для того чтобы окончательно во всём разобраться, нужно понять, какие цвета труб существуют в принципе.

  • серые (белые);
  • оранжевые;
  • зелёные (синие);
  • чёрные.

Вернёмся к нашему примеру. Человек стоит у стеллажа. Ему нужно провести внутреннюю канализацию в доме. Это просто: он сразу ищет взглядом серую и белую.

Для уличных канализаций в свою очередь предусмотрены трубы оранжевого цвета.

Кроме того, не стоит волноваться, что опираясь на вопрос цвета, вы можете совершить ошибку в выборе. Производители не могут менять цвета по своему желанию, т. к они регулируются правилами, которые обязательны для всех компаний, занимающихся выпуском подобной продукции. Поэтому, изучив их, вы смело можете отправиться выбирать необходимую трубу.

Общий подход к выбору канализационных труб


Трубы разного цвета имеют и различные характеристики:

  • прочность;
  • теплопроводность;
  • устойчивость к перепадам температур;
  • коррозионная стойкость.

Цвет трубы необходимо выбирать в зависимости от того, в каких условиях она будет эксплуатироваться. Конечно, можно сэкономить и выбирать по принципу, что подешевле. Но такая экономия в итоге выльется дополнительными расходами на демонтаж системы, а дом в это время будет без канализации.

Гладкая канализационная серая и белая труба

Трубы такого цвета используются для внутренней канализации. Они обладают хорошей теплоизоляцией, шумоизоляцией. Стандартный диаметр составляет 32, 40, 50, 110, 125 и 150 мм, длина — 150, 250, 500, 1000, 1500, 2000 и 5000 мм. Толщина слоя = 2,7 мм.

Герметичность их соединения достигается благодаря раструбу и резиновому кольцу внутри.

Выдерживает температуру до 95 градусов.

Поэтому эти трубы можно использовать при высокотемпературном сливе. В быту это посудомоечные и стиральные машины. Кислоты и химикаты также не оказывают на них воздействия.

За счёт таких характеристик они идеально подходят для внутренней канализационной системы домов.

Кроме того, они имеют на своей поверхности сантиметровую шкалу, чтобы её было быстрее и удобнее монтировать.

Какой цвет, где и зачем применяется

Окраска канализационных труб в соответствующие цвета в зависимости от назначения существенно упрощает процесс закупки материалов и прокладку коммуникации.

Серые


Трубы серого цвета предназначены для внутридомовой прокладки. Они изготавливаются из полипропилена и имеют следующие характеристики:

  • предназначены для стоков с температурой до 60-75°С, хотя кратковременно могут выдержать и температуру 90°С;
  • химически инертные: не подвержены коррозии и не выделяют вредные вещества;
  • малопрочные, толщина стенки 2,7 мм, деформируются уже при усилии 50-75 кгс/м2 (не подходят для подземной прокладки);
  • имеют невысокую стоимость.

Для использования внутри дома серые трубы подходят отлично. Они прокладываются с уклоном в местах, где на них не будет оказываться механическое воздействие, температура окружающего воздуха не должна быть ниже 0°С.

Рыжие


Трубы оранжевого цвета (“рыжие”) предназначены для прокладки канализационной сети вне дома. Яркая окраска для них выбрана не случайно: они хорошо заметны, что уменьшает риск случайного повреждения во время земельных работ. Материал изготовления – поливинилхлорид. Они дороже, чем серые, но и качественные характеристики у них выше:

  1. Прочные, делятся на 3 класса по жесткости: легкие трубы (класс L) – выдерживают воздействие до 200 кгс/м2, прокладываются на глубине до 2 м, не подходят для прокладки под автомобильной трассой; среднежесткие трубы (класс N) – выдерживают нагрузку до 400 кгс/м2, прокладываются на глубине до 6 м; жесткие трубы (класс S) – могут выдерживать нагрузку до 800 кгс/м2, глубина прокладки – до 8 м.
  2. Имеют низкую теплопроводность за счет пористого слоя, поэтому глубина прокладки не зависит от толщины промерзания грунта;
  3. Одинаково хорошо выдерживают как высокие, так и низкие температуры, на свойства труб эти перепады не влияют.

Рыжие трубы могут быть с гладкой наружной поверхностью и гофрированной. Во втором случае, они имеют большую площадь поверхности и, за счет перераспределения давления грунта, более устойчивы к нагрузкам.

Трубы из поливинилхлорида имеют существенный недостаток: они могут разрушаться под воздействием агрессивных стоков (кислот, масел). В этом случае лучше использовать многослойную продукцию из непластифицированного поливинилхлорида (НПВХ), которая абсолютно учтойчива к воздействию любой агрессивной среды.

При использовании рыжих труб для прокладки наружной коммуникации можно рассчитывать на то, что реальный срок службы канализации будет близок к прогнозируемому.

Черные


Черные трубы производятся из полиэтилена высокого давления и отличаются следующими особенностями:

  • повышенная прочность и устойчивость к гидроударам, которая достигается благодаря гофрированным стенкам снаружи и гладким изнутри, могут прокладываться на большой глубине (до 15 метров);
  • отсутствие коррозии при взаимодействии с агрессивными веществами;
  • большой срок эксплуатации – до 50 лет;

Черные трубы в основном делают больших диаметров (250-850 мм, могут быть и большего размера), их используют для устройства городской канализации, когда требуется пропускать большие объемы стоков. Максимальное значение температуры проходящей жидкости не должно быть больше 60 °С.

Черные трубы часто используют в качестве защиты кабеля, который прокладывается на глубине.

Существует разновидность черных труб, которые используются для дренажа, их легко узнать по наличию отверстий в стенках.

Белые


Трубы белого цвета используют для внутренней канализационной сети. Они обладают теми же основными характеристиками, что и серые, но имеют более эстетический вид. Белые трубы применяют, когда нужно проложить коммуникации открыто, для того, чтобы не портить интерьер помещения. Например, белая труба используется в туалете для отвода стоков от унитаза.

Особенностью белых труб является хорошее шумопоглощение и низкая теплопроводность. Они выдерживают температуру стоков до 95°С. Выпускаются диаметром от 32 мм до 150 мм, а длина цельного отрезка может составлять от 15 см до 5 м. Для удобства монтажа производители размещают на поверхности белых труб сантиметровую шкалу, по которой легко отмерить необходимую длину трубы.

Зеленые


Зеленый цвет (иногда синий) имеют трубы, которые используются для дренажа. Они легко гнутся и хорошо выдерживают вес проседающего грунта. Отлично переносят колебания температуры и ее отрицательные значения. На стенках зеленых труб обычно имеется перфорация для лучшего отвода жидкости. Некоторые производители усовершенствуют свою продукцию, оснащая ее фильтром из геотекстиля.

Экономить на качестве труб для канализации не стоит. Демонтаж и замена обойдутся дороже, чем изначально разумное вложение средств в качественные материалы. Если имеются сомнения по поводу того, в каких условиях будут эксплуатироваться трубы, лучше перестраховаться и взять более защищенные. В любом случае, вы выиграете, поскольку срок службы канализации будет дольше.

Труба канализационная рыжая, оранжевая и коричневая

Они предназначены для внешней канализации, которая к тому же является самотечной. Стандартный диаметр ПВХ-материалов для внешней канализации составляет 110, 125 и 150 мм, длина — 500, 1000 и 2000 мм.

Температурный режим у них ниже, чем у белых, не превышает 45 градусов.

Такой вид трубы более жесткий и прочный, состоит из нескольких слоев. Сделана для того, чтобы выдерживать грунтовое давление вне зависимости от того, насколько велико промерзание. Поэтому они идеально подходят для прокладки наружной канализации.

Материал в центральной своей части состоит из полихлорвинила, этим и объясняется более низкая теплопроводность. Этот материал имеет пористую структуру, от этого и снижается теплопроводность поверхности.

Принимая во внимание параметр толщины стенок, материал можно разделить на 2 класса SN4 и SN8. Они различаются в зависимости от глубины прокладки. Чем глубже заложение, тем толще нужна труба. Толщина материала у первого класса – 3 мм. У второго – 3,2 мм.

Однако несмотря на прочность, их нельзя использовать под магистралями. Она выдержит давление, но изогнётся, что в итоге вызовет засор или поломку.

Зеленые или синие пластиковые трубы

Это цвет для дренажных труб, которые сочетают в себе гибкость и жёсткость.

Стенки у них прочные и способны выдержать большой слой грунта.

Устойчивы к перепадам температуры. Этот факт делает их просто незаменимыми в своей области.

Ещё одна особенность – перфорированность поверхности. Она обеспечивает попадание воды внутрь материала. Бывают 110 мм, 160 мм в бухтах по 50 м, 200 мм в бухтах по 40 м.

Черные трубы

Черная труба для канализации не подходит для использования в водопроводах. Связано это с тем, что они крайне неустойчивы к давлению. Оказавшись под большим слоем грунта или напором воды, они просто выйдут из строя. Поэтому в такой цвет окрашиваются безнапорные ПНД трубы.

ПНД используют преимущественно тогда, когда требуется проложить безнапорное подведение воды или ее отвод. В основном это канализационные стоки.

Труба для канализации в черном цвете имеет массу достоинств. Прежде всего их совсем несложно проложить и монтировать. Они недорогие, но долговечные, что является довольно редким сочетанием.

Прекрасно подходят для отведения воды без насоса, поэтому их любят применять в частных хозяйствах.

Они выигрывают у своих металлических аналогов из-за устойчивости к перепадам температур и отсутствия коррозии.

После покупки вы с лёгкостью сможете установить их. Не понадобятся никакие дополнительные инструменты, за исключением компрессионного фитинга.

Завершить перечень достоинств можно отнюдь не последним по значимости – низкой ценой.

Какие изделия используют для кабельной канализации

Кабельная канализация — это сеть подземных каналов, в которых находятся все виды проводной связи (электрические и телефонные кабеля). Гибкая двустенная труба для кабельной канализации — это современный способ устройства проводной связи. Гибкая двустенная труба для кабельной канализации применяется для защиты кабеля от воздействия атмосферных явлений и механических повреждений. Гибкая двустенная труба для кабельной канализации имеет следующие преимущества:

  • Гладкую наружную и внутреннюю стенку;
  • Эластичность;
  • Устойчивость к химическим воздействиям;
  • Небольшой вес;
  • Длительный срок службы;
  • Простой монтаж.


Гибкая двустенная труба для кабельной канализации

Гибкая двустенная труба для кабельной канализации изготавливается согласно требованиям нормативных документов из полиэтилена высокой плотности и низкой плотности. В наше время гибкая двустенная труба для кабельной канализации является одним из самых востребованных изделий для прокладки коммуникаций. Ведь ремонт сетей, с применением данного трубопровода, можно осуществлять без разрушения дороги и выкапывания траншей, а с помощью смотровых устройств.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: