Операционные усилители. Виды и работа. Питание и особенности

Операционный усилитель

Что такое операционный усилитель

Операционный усилитель (ОУ) англ. Operational Amplifier (OpAmp), в народе – операционник, является усилителем постоянного тока (УПТ) с очень большим коэффициентом усиления. Словосочетание «усилитель постоянного тока» не означает, что операционный усилитель может усиливать только постоянный ток. Имеется ввиду, начиная с частоты в ноль Герц, а это и есть постоянный ток.

Термин «операционный» укрепился давно, так как первые образцы ОУ использовались для различных математических операций типа интегрирования, дифференцирования, суммирования и тд. Коэффициент усиления ОУ зависит от его типа, назначения, структуры и может превышать 1 млн!

Обозначение на схеме операционного усилителя

На схемах операционный усилитель обозначается вот так:

Чаще всего ОУ на схемах обозначаются без выводов питания

Итак, далее по классике, слева два входа, а справа – выход.

Вход со знаком «плюс» называют НЕинвертирующий, а вход со знаком «минус» инвертирующий. Не путайте эти два знака с полярностью питания! Они НЕ говорят о том, что надо в обязательном порядке подавать на инвертирующий вход сигнал с отрицательной полярностью, а на НЕинвертирующий сигнал с положительной полярностью, и далее вы поймете почему.

Питание операционных усилителей

Если выводы питания не указаны, то считается, что на ОУ идет двухполярное питание +E и -E Вольт. Его также помечают как +U и -U, VCC и VEE, Vc и VE. Чаще всего это +15 и -15 Вольт. Двухполярное питание также называют биполярным питанием. Как это понять — двухполярное питание?

Давайте представим себе батарейку

Думаю, все вы в курсе, что у батарейки есть «плюс» и есть «минус». В этом случае «минус» батарейки принимают за ноль, и уже относительно нуля считают напряжение батарейки. В нашем случае напряжение батарейки равняется 1,5 Вольт.

А давайте возьмем еще одну такую батарейку и соединим их последовательно:

Итак, общее напряжение у нас будет 3 Вольта, если брать за ноль минус первой батарейки.

А что если взять на ноль минус второй батарейки и относительно него уже замерять все напряжения?

Вот здесь мы как раз и получили двухполярное питание.

Идеальная и реальная модель операционного усилителя

Для того, чтобы понять суть работы ОУ, рассмотрим его идеальную и реальную модели.

1) Входное сопротивление идеального ОУ бесконечно большое.

В реальных ОУ значение входного сопротивления зависит от назначения ОУ (универсальный, видео, прецизионный и т.п.) типа используемых транзисторов и схемотехники входного каскада и может составлять от сотен Ом и до десятков МОм. Типовое значение для ОУ общего применения — несколько МОм.

2) Второе правило вытекает из первого правила. Так как входное сопротивление идеального ОУ бесконечно большое, то входной ток будет равняться нулю.

На самом же деле это допущение вполне справедливо для ОУ с полевыми транзисторами на входе, у которых входные токи могут быть меньше пикоампер. Но есть также ОУ с биполярными транзисторами на входе. Здесь уже входной ток может быть десятки микроампер.

3) Выходное сопротивление идеального ОУ равняется нулю.

Это значит, что напряжение на выходе ОУ не будет изменяться при изменении тока нагрузки. В реальных ОУ общего применения выходное сопротивление составляет десятки Ом (обычно 50 Ом).
Кроме того, выходное сопротивление зависит от частоты сигнала.

4) Коэффициент усиления в идеальном ОУ бесконечно большой. В реальности он ограничен внутренней схемотехникой ОУ, а выходное напряжение ограничено напряжением питания.

5) Так как коэффициент усиления бесконечно большой, следовательно, разность напряжений между входами идеального ОУ равняется нулю. Иначе если даже потенциал одного входа будет больше или меньше хотя бы на заряд одного электрона, то на выходе будет бесконечно большой потенциал.

6) Коэффициент усиления в идеальном ОУ не зависит от частоты сигнала и постоянен на всех частотах. В реальных ОУ это условие выполняется только для низких частот до какой-либо частоты среза, которая у каждого ОУ индивидуальна. Обычно за частоту среза принимают падение усиления на 3 дБ или до уровня 0,7 от усиления на нулевой частоте (постоянный ток).

Схема простейшего ОУ на транзисторах выглядит примерно вот так:

Принцип работы операционного усилителя

Давайте рассмотрим, как работает ОУ

Принцип работы ОУ очень прост. Он сравнивает два напряжения и на выходе уже выдает отрицательный, либо положительный потенциал питания. Все зависит от того, на каком входе потенциал больше. Если потенциал на НЕинвертирующем входе U1 больше, чем на инвертирующем U2, то на выходе будет +Uпит, если же на инвертирующем входе U2 потенциал будет больше, чем на НЕинвертирующем U1, то на выходе будет -Uпит. Вот и весь принцип ;-).

Читайте также:
Отделка углов стен в квартире: правильные варианты

Давайте рассмотрим этот принцип в симуляторе Proteus. Для этого выберем самый простой и распространенный операционный усилитель LM358 (аналоги 1040УД1, 1053УД2, 1401УД5) и соберем примитивную схему, показывающую принцип работы

Подадим на НЕинвертирующий вход 2 Вольта, а на инвертирующий вход 1 Вольт. Так как на НЕинвертирующем входе потенциал больше, то следовательно, на выходе мы должны получить +Uпит. Мы получили 13,5 Вольт, что близко к этому значению

Но почему не 15 Вольт? Виновата во всем сама внутренняя схемотехника ОУ. Максимальное значение ОУ не всегда может равняться положительному либо отрицательному напряжению питания. Оно может отклоняться от 0,5 и до 1,5 Вольт в зависимости от типа ОУ.

Но, как говорится, в семье не без уродов, и поэтому на рынке уже давно появились ОУ, которые могут выдавать на выходе допустимое напряжение питания, то есть в нашем случае это значения, близкие к +15 и -15 Вольтам. Такая фишка называется Rail-to-Rail, что в дословном переводе с англ. «от рельса до рельса», а на языке электроники «от одной шины питания и до другой».

Давайте теперь на инвертирующий вход подадим потенциал больше, чем на НЕинвертирущий. На инвертирующий подаем 2 Вольта, а на НЕинвертирующий подаем 1 Вольт:

Как вы видите, в данный момент выход «лег» на -Uпит, так как на инвертирующем входе потенциал был больше, чем на НЕинвертирующем.

Чтобы не качать лишний раз программный комплекс Proteus, можно в онлайне с помощью программы Falstad сэмулировать работу идеального ОУ. Для этого выбираем вкладку Circuits—Op-Amps—>OpAmp. В результате на вашем экране появится вот такая схемка:

На правой панели управления увидите бегунки для добавления напряжения на входы ОУ и уже можете визуально увидеть, что получится на выходе ОУ при изменении напряжения на входах.

Что будет на выходе ОУ, если на обоих входах будет ноль вольт?

Итак, мы рассмотрели случай, когда напряжение на входах может различаться. Но что будет, если они будут равны? Что нам покажет Proteus в этом случае? Хм, показал +Uпит.

А что покажет Falstad? Ноль Вольт.

Кому верить? Никому! В реале, такое сделать невозможно, чтобы на два входа загнать абсолютно равные напряжения. Поэтому такое состояние ОУ будет неустойчивым и значения на выходе могут принимать значения или -E Вольт, или +E Вольт.

Давайте подадим синусоидальный сигнал амплитудой в 1 Вольт и частотой в 1 килоГерц на НЕинвертирующий вход, а инвертирующий посадим на землю, то есть на ноль.

Смотрим, что имеем на виртуальном осциллографе:

Что можно сказать в этом случае? Когда синусоидальный сигнал находится в отрицательной области, на выходе ОУ у нас -Uпит, а когда синусоидальный сигнал находится в положительной области, то и на выходе имеем +Uпит.

Скорость нарастания выходного напряжения

Также обратите внимание на то, что напряжение на выходе ОУ не может резко менять свое значение. Поэтому, в ОУ есть такой параметр, как скорость нарастания выходного напряжения VUвых .

Этот параметр показывает насколько быстро может измениться выходное напряжение ОУ при работе в импульсных схемах. Измеряется в Вольт/сек. Ну и как вы поняли, чем больше значение этого параметра, тем лучше ведет себя ОУ в импульсных схемах. Для LM358 этот параметр равен 0,6 В/мкс.

Также смотрите видео «Что такое операционный усилитель (ОУ) и как он работает»

Операционные усилители. Виды и работа. Питание и особенности

Операционные усилители в источниках питания – типы и математика работы

Операционные усилители являются важным элементом схемотехники источников питания, прежде всего – в части построения систем обратной связи и регулировки выходного напряжения, тока, мощности, схемы обратной связи по току. Из большого числа типов операционных усилителей в силовой электронике применяются следующие классы ОУ:

– ОУ общего применения (индустриальные LM324, LM358);

– ОУ с однополярным питанием;

– ОУ с широким диапазоном выходного напряжения – усилители так называемого класса rail-to-rail (R2R).

Другие классы ОУ при построении источников питания используются существенно реже. Условное обозначение операционного усилителя представлено на рисунке OPAMP.1.

Рисунок OPAMP.1 – Условное обозначение операционного усилителя

Операционный усилитель – это математический прибор, обеспечивающий выполнение математических операций с аналоговыми сигналами. Отдельный операционный усилитель содержит:

При отсутствии обратной связи напряжение на выходе Vout в математически идеальном ОУ связано с напряжением на входе следующим образом:

Vout – напряжение на выходе ОУ;

V+ – напряжение на неинвертирующем (+) входе;

V – напряжение на инвертирующем (-) входе;

Gopenloop – коэффициент усиления с разомкнутой петлёй обратной связи.

В реальном ОУ максимальное выходное напряжение ограничивается величиной напряжения питания. Режим без обратной связи практически не используется (т.к. он в принципе не нужен), а используются схемы с обратной связью, основными из которых являются:

Читайте также:
Панно для кухни – идеи и инструкции

– схема неинвертирующего усилителя;

– схема инвертирующего усилителя;

– схема дифференциального усилителя.

Основные параметры операционного усилителя

1. Напряжение питания (Supply Voltage) V – напряжение питания операционного усилителя. Обычно указывают минимальный уровень напряжения, при котором еще возможна работа ОУ и максимальное значение между «+» и «-» входами питания выше которого усилитель выходит из строя.

2. Максимальное дифференциальное входное напряжение (Differential Input Voltage) – максимальное напряжение между инвертирующим и неинвертирующим входами ОУ.

3. Максимальное входное напряжение (Input Voltage) – максимальное напряжение на любом из входов ОУ.

4. Максимальная рассеваемая мощность (Power Dissipation) – максимальная мощность рассеваемая корпусом ОУ.

5. Входной ток ОУ (Input Current) – величина тока входов операционного усилителя. В ОУ с входными каскадами на биполярных транзисторах выходной ток может зависеть от полярности напряжения: при положительных входных напряжениях он будет незначительным (единицы-десятки мкА), а при отрицательных напряжениях относительно «–» напряжения питания – составлять десятки мА.

6. Напряжение смещения (Input Offset Voltage) – максимальная разность напряжений между «+» и «-» входами ОУ в линейном режиме работы в составе одной из схем с положительной обратной связью. Этот параметр характеризует точность (прецезионность) ОУ.

7. Входной ток смещения, эквивалентный входной ток (Input Bias Current) – входной ток в линейном режиме работы.

8. Разность входных токов (Input Offset Current) – разность между входными токами ОУ.

9. Диапазон входных напряжений (Input Common-Mode Voltage Range) – показывает минимальное и максимальное напряжения на входах ОУ при условии работы в линейном режиме.

10. Потребляемый ток (Supply Current) – ток питания ОУ. Как правило, указывается ток собственного потребления ОУ без нагрузки.

11. Статический коэффициент усиления при большом сигнале (Large Signal Voltage Gain) – показывает отношение изменения выходного напряжения к вызвавшему это изменение изменению разности потенциалов между входами ОУ.

12. Коэффициент ослабления синфазного сигнала (common-mode rejection ratio).

13. Коэффициент подавления пульсаций напряжения питания (power supply rejection ratio).

14. Коэффициент связи между ОУ – для нескольких ОУ и одном корпусе (Amplifier-to-Amplifier Coupling).

15. Выходной ток цепи источника питания/цепь стока (Output Current Source/Sink).

Основные схемы включения операционных усилителей
Схема неинвертирующего усилителя

На рисунке OPAMP.2 изображена электрическая схема неинвертирующего усилителя на ОУ и её частный случай – повторитель напряжения. Резисторы R1 и R2 образуют резисторный делитель, обеспечивающий отрицательную обратную связь – часть напряжения с выхода ОУ поступает на инвертирующий вход усилителя. Коэффициент усиления регулируется глубиной обратной связи – коэффициентом деления резисторного делителя. Если же напряжение с выход ОУ напрямую подается на инвертирующий вход, то получается схема повторителя напряжения. Преимуществом схемы неинвертирующего усилителя является высокое входное сопротивление, отсутствие инверсии сигнала.

Рисунок OPAMP.2 – Схема неинвертирующего усилителя (a) и повторителя напряжения (b)

Схема инвертирующего усилителя

На рисунке OPAMP.3 изображена электрическая схема инвертирующего усилителя на ОУ. Здесь отрицательная обратная связь обеспечивается за счет резистора R2 соединенного с выходом микросхемы ОУ.

Недостатками схемы является низкое входное сопротивление, полностью определяемое сопротивлением R1 и инверсия входного сигнала.

Рисунок OPAMP.3 – Схема инвертирующего усилителя

Схема дифференциального усилителя

Схема дифференциального усилителя на ОУ (рисунок OPAMP.4) усиливает разность между входными напряжениями. Входное сопротивление схем определяется резистором R1 для входа 1 и суммой сопротивлений R1’ и R2’ для входа 2. Видно, что в общем случае в данной схеме перестановка входных сигналов местами изменяет результат – выходное напряжение. И лишь при равенстве сопротивлений резисторов:

Выходное напряжение равно:

Рисунок OPAMP.4 – Схема дифференциального усилителя

Схема прецизионного двухполупериодного выпрямителя

Схема прецизионного двухполупериодного выпрямителя представлена на рисунке OPAMP.5. Величина RL – внутреннего нагрузочного сопротивления, выбирается в разумных пределах исходя из требования, что рабочий ток через него не будет превышать максимальный выходной ток ОУ (как правило, 10-50% от максимального выходного тока). Диоды VD1 и VD2 выбираются одного типа и с максимально близкими вольт-амперными характеристиками.

Рисунок OPAMP.5 – Схема прецизионного двухполупериодного выпрямителя усилителя (единичный коэффициент усиления, RL – внутренне нагрузочное сопротивление, выбирается в соответствии с параметрами ОУ)

Виртуальный ноль для питания операционных усилителей

В ряде случаев, когда необходимо обеспечить биполярное питание операционного усилителя при наличии только одного источника питания (с двумя выводами – положительным и отрицательным). Наиболее простым решением по созданию виртуального нуля (искусственной средней точки) является использование резисторного делителя (рисунок OPAMP.6) с буферными конденсаторами для сглаживания импульсных нагрузок. Схемы с операционным усилителем обеспечивают четкую фиксацию напряжения средней точки даже при значительном «перекосе фаз» т.е. большой разности токов потребляемых от «плюсового» и от «минусового» выводов. При значительных потребляемых токах можно использовать схему с дополнительным токовым буфером, выполненным на двух комплементарных транзисторах. В схеме можно использовать недорогие и доступные ОУ общего применения, такие как LM324, LM358. Другим преимуществом схемы является меньшее потребление энергии, что важно при питании от гальванических батарей.

Читайте также:
Панорамное остекление в частном доме и квартире

Рисунок OPAMP.6. Схемы формирования виртуального нуля (искусственная средняя точка) для питания операционных усилителей

Электроника для всех

Блог о электронике

Операционный усилитель

Что то часто мне стали задавать вопросы по аналоговой электронике. Никак сессия студентов за яцы взяла? ;) Ладно, давно пора двинуть небольшой ликбезик. В частности по работе операционных усилителей. Что это, с чем это едят и как это обсчитывать.

Что это
Операционный усилитель это усилок с двумя входами, невье… гхм… большим коэфициентом усиления сигнала и одним выходом. Т.е. у нас Uвых= K*Uвх а К в идеале равно бесконечности. На практике, конечно, там числа поскромней. Скажем 1000000. Но даже такие числа взрывают мозг при попытке их применить напрямую. Поэтому, как в детском саду, одна елочка, две, три, много елочек — у нас тут много усиления ;) И баста.

А входа два. И один из них прямой, а другой инверсный.

Более того, входы высокоомные. Т.е. их входное сопротивление равно бесконечности в идеальном случае и ОЧЕНЬ много в реальном. Счет там идет на сотни МегаОм, а то и на гигаомы. Т.е. оно замеряет напряжение на входе, но на него влияет минимально. И можно считать, что ток в ОУ не течет.

Напряжение на выходе в таком случае обсчитывается как:

Очевидно, что если на прямом входе напряжение больше чем на инверсном, то на выходе плюс бесконечность. А в обратном случае будет минус бесконечность.

Разумеется в реальной схеме плюс и минус бесконечности не будет, а их замещать будет максимально высокое и максимально низкое напряжение питания усилителя. И у нас получится:

Компаратор
Устройство позволяющее сравнивать два аналоговых сигнала и выносить вердикт — какой из сигналов больше. Уже интересно. Применений ему можно придумать массу. Кстати, тот же компаратор встроен в большую часть микроконтроллеров и как им пользоваться я показывал на примере AVR в статьях про использование аналогового компаратора и про создание на его базе АЦП. Также компаратор замечательно используется для создания всяких ШИМ сигналов.

Но одним компаратором дело не ограничивается, ведь если ввести обратную связь, то из ОУ можно сделать очень многое.

Обратная связь
Если мы сигнал возьмем со выхода и отправим прямиком на вход, то возникнет обратная связь.

Положительная обратная связь
Возьмем и загоним в прямой вход сигнал сразу с выхода.

Что получим? А ничего интересного, процесс пойдет по следующей цепочке событий.

В общем, выход мгновенно свалится в бесконечные минуса, а в реале ляжет на шину отрицательного питания и усе. Поэтому такое включение применяется крайне редко. Например в триггере Шмитта для обеспечения гистерезиса.

Триггер Шмитта
Представим себе компаратор включенный по такой вот схеме и запитанный от +/- 15 вольт:

  • Напряжение U1 больше нуля — на выходе -15 вольт
  • Напряжение U1 меньше нуля — на выходе +15 вольт

А что будет если напряжение будет равно нулю? По идее на выходе должен быть ноль. Но в реальности напряжение НИКОГДА не будет равно нулю. Ведь даже если на один электрон заряд правого перевесит заряд левого, то уже этого достаточно, чтобы на бесконечном усилении вкатить потенциал на выход. И на выходе начнется форменный ад — скачки сигнала то туда, то сюда со скоростью случайных возмущений, наводящихся на входы компаратора.

Для решения этой проблемы вводят гистерезис. Т.е. своего рода зазор между переключениями из одного состояния в другое. Для этого вводят положительную обратную связь, вот так:

Считаем, что на инверсном входе в этот момент +10 вольт. На выходе с ОУ минус 15 вольт. На прямом входе уже не ноль, а небольшая часть выходного напряжения с делителя. Примерно -1.4 вольта Теперь, пока напряжение на инверсном входе не снизится ниже -1.4 вольта выход ОУ не сменит своего напряжения. А как только напряжение станет ниже -1.4, то выход ОУ резко перебросится в +15 и на прямом входе будет уже смещение в +1.4 вольта.

И для того, чтобы сменить напряжение на выходе компаратора сигналу U1 надо будет увеличиться на целых 2.8 вольта, чтобы добраться до верхней планки в +1.4.

Читайте также:
Светодиодные фасадные светильники для подсветки зданий

Возникает своеобразный зазор где нет чувствительности, между 1.4 и -1.4 вольтами. Ширина зазора регулируется соотношениями резисторов в R1 и R2. Пороговое напряжение высчитывается как Uout/(R1+R2) * R1 Скажем 1 к 100 даст уже +/-0.14 вольт.

Но все же ОУ чаще используют в режиме с отрицательной обратной связью.

Отрицательная обратная связь
Окей, воткнем по другому:

В случае отрицательной обратной связи у ОУ появляется интересное свойство. Он всегда будет пытаться так подогнать свое выходное напряжение, чтобы напряжения на входах были равны, в результате давая нулевую разность.
Пока я в великой книге от товарищей Хоровица и Хилла это не прочитал никак не мог вьехать в работу ОУ. А оказалось все просто.

Повторитель
И получился у нас повторитель. Т.е. на входе U1, на инверсном входе Uout = U1. Ну и получается, что Uout = U1.

Спрашивается нафига нам такое счастье? Можно же было напрямую кинуть провод и не нужен будет никакой ОУ!

Можно, но далеко не всегда. Представим себе такую ситуацию, есть датчик выполненный в виде резистивного делителя:

Нижнее сопротивление меняет свое значение, меняется расклад напряжений выхода с делителя. А нам надо снять с него показания вольтметром. Но у вольтметра есть свое внутреннее сопротивление, пусть большое, но оно будет менять показания с датчика. Более того, если мы не хотим вольтметр, а хотим чтобы лампочка меняла яркость? Лампочку то сюда никак не подключить уже! Поэтому выход буфферизируем операционным усилителем. Его то входное сопротивление огромно и влиять он будет минимально, а выход может обеспечить вполне ощутимый ток (десятки миллиампер, а то и сотни), чего вполне хватит для работы лампочки.
В общем, применений для повторителя найти можно. Особенно в прецезионных аналоговых схемах. Или там где схемотехника одного каскада может влиять на работу другого, чтобы разделить их.

Усилитель
А теперь сделаем финт ушами — возьмем нашу обратную связь и через делитель напряжения подсадим на землю:

Теперь на инверсный вход подается половина выходного напряжения. А усилителю то по прежнему надо уравнять напряжения на своих входах. Что ему придется сделать? Правильно — поднять напряжение на своем выходе вдвое выше прежнего, чтобы компенсировать возникший делитель.

Теперь будет U1 на прямом. На инверсном Uout/2 = U1 или Uout = 2*U1.

Поставим делитель с другим соотношением — ситуация изменится в том же ключе. Чтобы тебе не вертеть в уме формулу делителя напряжения я ее сразу и дам:

Мнемонически запоминается что на что делится очень просто:

Таким образом, можно очень легко умножать аналоговые значения на числа больше 1. А как быть с числами меньше единицы?

Инвертирующий усилитель
Тут поможет только инверсный усилитель. Разница лишь в том, что мы берем и прямой вход коротим на землю.

При этом получается, что входной сигнал идет по цепи резисторов R2, R1 в Uout. При этом прямой вход усилителя засажен на нуль. Вспоминаем повадки ОУ — он постарается любыми правдами и неправдами сделать так, чтобы на его инверсном входе образовалось напряжение равное прямому входу. Т.е. нуль. Единственный вариант это сделать — опустить выходное напряжение ниже нуля настолько, чтобы в точке 1 возник нуль.

Итак. Представим, что Uout=0. Пока равно нулю. А напряжение на входе, например, 10 вольт относительно Uout. Делитель из R1 и R2 поделит его пополам. Таким образом, в точке 1 пять вольт.

Пять вольт не равно нулю и ОУ опускает свой выход до тех пор, пока в точке 1 не будет нуля. Для этого на выходе должно стать (-10) вольт. При этом относительно входа разность будет 20 вольт, а делитель обеспечит нам ровно 0 в точке 1. Получили инвертор.

Но можно же и другие резисторы подобрать, чтобы наш делитель выдавал другие коэффициенты!
В общем, формула коэффициента усиления для такого усилка будет следующей:

Ну и мнемоническая картинка для быстрого запоминания ху из ху.

Вычитающая схема
Однако никто же не мешает подать на прямой вход не ноль, а любое другое напряжение. И тогда усилитель будет пытаться приравнять свой инверсный вход уже к нему. Получается вычитающая схема:

Допустим U2 и U1 будет по 10 вольт. Тогда на 2й точке будет 5 вольт. А выход должен будет стать таким, чтобы на 1й точке стало тоже 5 вольт. То есть нулем. Вот и получается, что 10 вольт минус 10 вольт равняется нуль. Все верно :)

Если U1 станет 20 вольт, то выход должен будет опуститься до -10 вольт.
Сами посчитайте — разница между U1 и Uout станет 30 вольт. Ток через резистор R4 будет при этом (U1-Uout)/(R3+R4) = 30/20000 = 0.0015А, а падение напряжения на резисторе R4 составит R4*I4 = 10000*0.0015 = 15 вольт. Вычтем падение в 15 вольт из входных 20 и получим 5 вольт.

Читайте также:
Регулировка насосной станции принципы и правила настройки

Таким образом, наш ОУ прорешал арифметическую задачку из 10 вычел 20, получив -10 вольт.

Более того, в задачке есть коэффициенты, определяемые резисторами. Просто у меня, для простоты, резисторы выбраны одинакового номинала и поэтому все коэффициенты равны единице. А на самом деле, если взять произвольные резисторы, то зависимость выхода от входа будет такой:

Мнемотехника для запоминания формулы расчета коэффициентов такова:
Прям по схеме. Числитель у дроби вверху поэтому складываем верхние резисторы в цепи протекания тока и множим на нижний. Знаменатель внизу, поэтому складываем нижние резисторы и множим на верхний.

Если же вводные резисторы (R4 и R5) равны друг другу. И резистор обратной связи и резистор на землю (R3 и R6) тоже равны друг другу. То формула упрощается до

Таким образом, на одном усилке можно два сигнала сначала вычесть, а потом умножить на константу. Этим, кстати, я воспользовался в схеме реобаса, чтобы привести милливольтный сигнал с датчика температуры к вменяемому виду.

Раз можно вычитать, то можно и суммировать

Сумматор инвертирующий

Тут все просто. Т.к. точка 1 у нас постоянно приводится к 0, то можно считать, что втекающие в нее токи всегда равны U/R, а входящие в узел номер 1 токи суммируются. Соотношение входного резистора и резистора в обратной связи определяет вес входящего тока.

Ветвей может быть сколько угодно, я же нарисовал всего две.

Резисторы на входе (R1, R2) определяют величину тока, а значит общий вес входящего сигнала. Если сделать все резисторы равными, как у меня, то вес будет одинаковым, а коэффициент умножения каждого слагаемого будет равен 1. И Uout = -1(U1+U2)

Сумматор неинвертирующий
Тут все чуток посложней, но похоже.

Причем резисторы в обратной связи должны быть такими, чтобы соблюдалось уравнение R3/R4 = K1+K2

В общем, на операционных усилителях можно творить любую математку, складывать, умножать, делить, считать производные и интегралы. Причем практически мгновенно. На ОУ делают аналоговые вычислительные машины. Одну такую я даже видел на пятом этаже ЮУрГУ — дура размером в пол комнаты. Несколько металлических шкафов. Программа набирается соединением разных блоков проводочками :)

Продолжение следует, когда-нибудь :)

Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!

А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.

199 thoughts on “Операционный усилитель”

> с двумя входами. Невье… гхм… большим
А не лучше ли запятую вместо точки?
> Поэтому такое включение не применяется. ОУ сконструирован для отрицательной обратной связи.
Ну ПОС тоже применяют, получая триггер Шмитта. В том же реобасе используется. Так что можно было и его описать)

Операционный усилитель. Принцип работы и схемы включения.

Продолжаем изучать основы электроники на нашем сайте, и героем сегодняшней статьи будет еще одно замечательное устройство — а именно операционный усилитель. Сегодня разберемся, что это вообще такое, как он работает, ну и парочку основных схем по традиции разберем 🙂

Итак, по определению ОУ — это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления и несимметричным выходом. Теперь разберемся, что это значит…

ОУ имеет два входа и один выход. Один из этих входов называют неинвертирующим и обозначают на схемах плюсом, второй, соответственно, является инвертирующим. Так вот, напряжение на выходе ОУ определяется следующим образом:

K — это коэффициент усиления операционника, обычно он имеет значения порядка 100000 — 1000000. Из формулы видим, что в случае, когда сигналы на обоих входах ОУ равны, на выходе ноль. Если, например, потенциал инвертирующего входа (-) стал более положительным, чем потенциал неинвертирующего входа (+), то выходной сигнал изменится в отрицательном направлении. В этом и заключается работа операционного усилителя.

Помимо уже упомянутых входов и выхода ОУ имеет также выводы для подачи питания, и вот как выглядит его обозначение на принципиальных схемах:

Чаще всего в схемах на операционниках используется обратная связь, поскольку коэффициент усиления ОУ без обратной связи слишком уж велик 🙂 В замечательной книге Хоровица и Хилла приведены несколько, а точнее два правила, которые определяют как работает операционник в схемах с обратной связью.

  • Итак, первое правило заключается в том, что входы ОУ не потребляют ток. Конечно, в реальности потребление все-таки есть, поскольку идеального ничего не бывает, но это потребление составляет единицы нА, а то и меньше.
  • Второе правило заключается в том, что выход ОУ стремится к тому, чтобы разность напряжений между его входами была равна нулю. Вот эта формулировка мне, честно говоря, не слишком нравится. А суть тут заключается в том, что часть выходного напряжения через цепь обратной связи передается на вход и в результате этого потенциал обоих входов ОУ выравнивается.
Читайте также:
Садовый фонарь из веток

Для того, чтобы разобраться в работе операционного усилителя, давайте рассмотрим пару-тройку схем. И начнем со схемы неинвертирующего усилителя (кстати на схемах порой опускают обозначение выводов для подачи питания на ОУ, мы, пожалуй, тоже так поступим 🙂 ):

Для начала определим, какое же значение напряжения мы получим на выходе, подав на вход U_ <вх>. Как следует из второго правила — операционник с обратной связью «добьется» того, чтобы потенциалы входов выровнялись, а это значит, что:

Но в то же время R_1 и R_2 образуют делитель напряжения и тогда:

Приравниваем эти два значения и получаем, что:

Получили такой вот коэффициент усиления для неинвертирующего усилителя на операционном усилителе с обратной связью.

Давайте рассмотрим конкретный пример, чтобы еще лучше понять работу данной схемы. Пусть будут такие номиналы: R_2 = 10medspace КОм , R_1 = 1medspace КОм . На вход подадим 1 В. В этом случае напряжение на выходе ОУ начнет расти, поскольку ( U_+medspace-medspace U_- > 0 ).

И расти оно будет до тех пор, пока потенциал на инвертирующем (-) выходе не станет равен 1 В (так как на неинвертирующем входе (+) у нас как раз-таки 1 В). Остается определить, при каком выходном значении напряжения, U_- будет равно 1 В. Входы ОУ ток не потребляют, значит ток протекает по цепи выход — R_2 — R_1 — земля:

Из этого равенства без проблем определим U_ <вых>, при значении U_- равном 1 В:

Подставив наши значения, получим U_ <вых>= 11medspace В . Это подтверждает верность выведенной нами ранее формулы U_ <вых>= U_<вх>medspace(1 + frac) 🙂

С неинвертирующим усилителем разобрались, давайте рассмотрим еще одну схему — инвертирующий усилитель.

В принципе работает эта схема практически так же, как предыдущая. На неинвертирующем (+) входе потенциал земли, значит на инвертирующем тоже будет такой же потенциал. То есть:

Не забываем, что ток входы ОУ не потребляют, а значит ток протекает по цепи выход — R_2 — R_1 — вход и равен он:

Отсюда нам остается только выразить U_ и определить коэффициент усиления цепи:

Сразу же становится понятно, почему усилитель называется инвертирующим 🙂 Сигналы на входе и на выходе разных знаков.

В завершение рассмотрим, пожалуй, еще одну небольшую схемку, а именно схему повторителя на операционном усилителе с обратной связью:

Если внимательно посмотреть на эту схему, то становится понятно, что это всего лишь неинвертирующий усилитель, у которого R_1 равно бесконечности, а R_2 равно нулю. Подставив эти значения в формулу для U_ получим:

Таким образом, напряжение на выходе повторяет сигнал на входе! Огромный плюс такого повторителя заключается в том, что его входной импеданс огромен, а выходной, напротив, мал.

Наверно, на этом сегодня закончим, а в следующей статье рассмотрим и проанализируем какие-нибудь схемки посложнее 🙂 До скорых встреч!

Операционные усилители. Виды и принцип действия

Стоит сказать, что ток выходя из операционного усилителя не расходует электричество. Два входа обозначены разными знаками и оказывают высокое сопротивление, благодаря этому можно использовать большое количество электричества в начале усилителя, где и случается оценка напряжения, от этого зависит какой сигнал устройство выдаст, выходя из усилителя. Важную роль играет усилительный коэффициент, он может достигать миллиона.

Насколько большим будет напряжение, зависит от того сколько его было получено, чем его больше на входе, тем больше будет отдано, и наоборот. От источника питания зависят значения полюсов.

  1. Питание операционного усилителя
  2. Разновидности
  3. Схема вычитания
  4. Схема сложения
  5. Схема интегратора
  6. Схема дифференциатора
  7. Аналоговый компаратор

Питание операционного усилителя

На примере батарейки рассмотрим принцип питания системы, она имеет два значения, в качестве точки отсчета возьмем отрицательный, тогда позитивный будет давать 1,5 В. Если подключить два последовательных элемента, то можно заметить такое: за нулевую точку возьмем негативный полюс батареи снизу и измерим положительную сторону батареи снизу, результат будет +10 В.

Читайте также:
Посконник: виды и тонкости выращивания

Для создания биполярного окружения можно за нулевую точку взять место между двумя батареями, тогда ток между полюсами будет равен и составит +5 и -5. Радиолюбители предпочитают схемы простой конструкции, подача питания в них происходит от сети, при этом ток понижается до 30 В. Обычно системы делают так, чтобы место в центре имело обмотку, обмотка обеспечит усилителю +15 и -15 В.

Разновидности

Операционные усилители можно поделить на несколько типов.

Это базовая схема, ее особенность заключается в том, что она имеет помимо основных частей еще и фазу, значения которой также нужно учитывать. Амплитуда и коэффициент в такой схеме на выходе превосходит вход ровно в два раза. Такие усилители обрели популярность благодаря своей простоте. k=-(R2)/(R1) – формула необходимая для расчета напряжения. Исходя из этого, заметно, что сопротивление не влияет на полученный ток, оно служит своеобразной защитой.

Эта схема довольно похожа на первую, но ее отличие в прямом сигнале, что сохраняет важность фазы. Коэффициент разницы сигнала также составляет два. Ток выходя из усилителя лишь изменяет амплитуду. Такая схема также довольно простая и популярная, она имеет сопротивление. Для нее используется формула k=1+(R2/R1). И исходя из этого, можно заметить, что усиление меньше единицы быть не может.

Схема вычитания

Такая схема может создать неодинаковые по значениям сигналы, их можно усиливать. Эта схема имеет еще одно название – дифференциальная. Она состоит из усложненной конструкции и к ней применяется формула Uab=(R3/R1)*(Ua-Ub).

Схема сложения

Эта схема противоположная предыдущей схеме, она может обрабатывать сразу несколько входящих сигналов, по похожему методу работают звуковые микшеры. С этой схемой можно суммировать сигналы за формулой U=-R((U1/R1)+(U2/R2)+(U3/R3)+(Un/Rn).

Схема интегратора

Если добавить в простую схему обратную связь и конденсатор (не обязательно) получится интегратор. Такая схема похожа по устройству на первую рассмотренную схему, но при добавлении обратной связи вся система начинает зависеть от входящего сигнала. Такой усилитель отличается переходами сигналов с одной формы в другую. Также, интегратор может быть фильтром для пониженных частот.

Схема дифференциатора

Эта схема равна обратной интегратора. От количества входящего тока зависит усиление, такая характеристика способствует использованию устройств с подобной системой для фильтрации повышенных частот.

Аналоговый компаратор

Компаратор способен переводить частоты, сторона перевода зависит от уровня напряжения. Компаратор используется в аналоговых системах. Схема не подразумевает наличие обратной связи, из-за этого она имеет высокое сопротивление. На позитивный полюс поступает сигнал, а на негативный энергия. Так как, обратная связь отсутствует, усиление может длиться и достигать бесконечного числа. Такая система может сбоить в случаях, когда значения на полюсах приближаются к равным.

На видео: Как работает операционный усилитель.

Что такое операционный усилитель?

В радиоэлектронике и микросхемотехнике широкое распространение получил операционный усилитель (ОУ). Он обладает отличными техническими характеристиками (ТХ) по усилению сигналов. Чтобы понять сферы применения ОУ, нужно узнать его принцип действия, схему подключения и основные ТХ.

Что такое операционный усилитель

ОУ — интегральная микросхема (ИМС), основным предназначением которой является усиление значения постоянного тока. Она имеет только один выход, который называется дифференциальным. Этот выход обладает высоким коэффициентом, усиливающим сигнал (Kу). ОУ в основном применяются при построении схем с отрицательной обратной связью (ООС), которая при основной ТХ по усилению и определяет Kу исходной схемы. ОУ применяются не только в виде отдельных ИМС, но и в разных блоках сложных устройств.

У ОУ 2 входа и 1 выход, а также есть выводы для подключения источника питания (ИП). Принцип действия операционного усилителя прост. Существует 2 правила, взятых за основу. Правила описывают простые процессы работы ИМС, происходящие в ОУ, и как работает ИМС, понятно даже чайникам. На выходе разность напряжений (U) равна 0, а входы ОУ почти не потребляют ток (I). Один вход называется неинвертирующим (V+), а другой является инвертирующим (V-). Кроме того, входы ОУ обладают высоким сопротивлением (R) и практически не потребляют I.

Чип сравнивает значения U на входах и выдает сигнал, предварительно усиливая его. Kу ОУ имеет высокое значение, достигающее 1000000. Если произойдет подача низкого U на вход, то на выходе возможно получить величину, равную U источника питания (Uип). Если U на входе V+ больше, чем на V-, то на выходе получится максимальное положительное значение. При запитывании положительным U инвертирующего входа на выходе будет максимальная величина отрицательного напряжения.

Основным требованием для работы ОУ является применение двухполярного ИП. Возможно применение однополярного ИП, но при этом возможности ОУ сильно ограничиваются. Если использовать батарейку и принять за 0 ее плюсовую сторону, то при измерении значений получится 1,5 В. Если взять 2 батарейки и соединить их последовательно, то произойдет сложение U, т.е. прибор покажет 3 В.

Читайте также:
Самостоятельная установка насоса в колодец: инструкция

Если принять за ноль минусовой вывод батарейки, то прибор покажет 3 В. В другом случае, если принять за 0 плюсовой вывод, то получается -3 В. При использовании в качестве нуля точки между двумя батарейками получится примитивный двухполярный ИП. Проверить исправность ОУ можно только при подключении его в схему.

Виды и обозначения на схеме

С развитием электросхемотехники операционные усилители постоянно совершенствуются и появляются новые модели.

Классификация по сферам применения:

  1. Индустриальные — дешевый вариант.
  2. Презиционные (точная измерительная аппаратура).
  3. Электрометрические (малое значение Iвх).
  4. Микромощные (потребление малого I питания).
  5. Программируемые (токи задаются при помощи I внешнего).
  6. Мощные или сильноточные (отдача большего значения I потребителю).
  7. Низковольтные (работают при U Читайте также: Что такое варистор, основные технические параметры, для чего используется

Основные характеристики

ОУ, как и другие радиодетали, имеют ТХ, которые можно разделить на типы:

  1. Усилительные.
  2. Входные.
  3. Выходные.
  4. Энергетические.
  5. Дрейфовые.
  6. Частотные.
  7. Быстродействие.

Коэффициент усиления является основной характеристикой ОУ. Он характеризуется отношением выходного сигнала ко входному. Его еще называют амплитудной, или передаточной ТХ, которая представлена в виде графиков зависимости. К входным относятся все величины для входа ОУ: Rвх, токи смещения (Iсм) и сдвига (Iвх), дрейф и максимальное входное дифференциальное U (Uдифмакс).
Iсм служит для работы ОУ на входах. Iвх нужен для функционирования входного каскада ОУ. Iвх сдвига — разность Iсм для 2 входных полупроводников ОУ.

Во время построения схем нужно учитывать эти I при подключении резисторов. Если Iвх не учитывать, то это может привести к созданию дифференциального U, которое приведет к некорректной работе ОУ.
Uдифмакс — U, которое подается между входами ОУ. Его величина характеризует исключение повреждения полупроводников каскада дифференциального исполнения.

Для надежной защиты между входами ОУ подключаются встречно-параллельно 2 диода и стабилитрона. Дифференциальное входное R характеризуется R между двумя входами, а синфазное входное R — величина между 2 входами ОУ, которые объединены, и массой (земля). К выходным параметрам ОУ относятся выходное R (Rвых), максимальное выходное U и I. Параметр Rвых должен быть меньшим по значению для обеспечения лучших характеристик усиления.

Для достижения маленького Rвых нужно применять эмиттерный повторитель. Iвых изменяется при помощи коллекторного I. Энергетические ТХ оцениваются максимальной мощностью, которую потребляет ОУ. Причина некорректной работы ОУ — разброс ТХ полупроводников дифференциального усилительного каскада, зависящего от температурных показателей (температурный дрейф). Частотные параметры ОУ являются основными. Они способствуют усилению гармонических и импульсных сигналов (быстродействие).

В ИМС ОУ общего и специального вида включается конденсатор, предотвращающий генерацию высокочастотных сигналов. На частотах с низким значением схемы обладают большим коэффициентом Kу без обратной связи (ОС). При ОС используется неинвертирующее включение. Кроме того, в некоторых случаях, например при изготовлении инвертирующего усилителя, ОС не используется. Кроме того, у ОУ есть динамические характеристики:

  1. Скорость нарастания Uвых (СН Uвых).
  2. Время установления Uвых (реакция ОУ при скачке U).

Где применяются

Существует 2 вида схем ОУ, которые различаются способом подключения. Главный недостаток ОУ — непостоянство Kу, зависящего от режима функционирования. Основные сферы применения — усилители: инвертирующий (ИУ) и неинвертирующий (НИУ). В схеме НИУ Kу по U задается резисторами (сигнал нужно подавать на вход). ОУ содержит ООС последовательного типа. Эта связь выполнена на одном из резисторов. Она подается только на V-.

В ИУ происходит сдвиг сигналов по фазе. Для изменения знака выходного отрицательного напряжения необходима параллельная ОС по U. Вход, который является неинвертирующим, нужно заземлить. Входной сигнал через резистор подается на инвертирующий вход. Если неинвертирующий вход уходит на землю, то разность U между входами ОУ равна 0.

Можно выделить устройства, в которых применяются ОУ:

  1. Предусилители.
  2. Усилители звуковых и видеочастотных сигналов.
  3. Компараторы U.
  4. Дифусилители.
  5. Диференциаторы.
  6. Интеграторы.
  7. Фильтрующие элементы.
  8. Выпрямители (повышенная точность выходных параметров).
  9. Стабилизаторы U и I.
  10. Вычислители аналогового типа.
  11. АЦП (аналого-цифровые преобразователи).
  12. ЦАП (цифро-аналоговые преобразователи).
  13. Устройства для генерации различных сигналов.
  14. Компьютерная техника.

Операционные усилители и их применение получили широкое распространение в различной аппаратуре.

Что такое биполярный транзистор и какие схемы включения существуют

Что такое триггер, для чего он нужен, их классификация и принцип работы

Что такое аттенюатор, принцип его работы и где применяется

Что такое компаратор напряжения и для чего он нужен

Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность

Что такое делитель напряжения и как его рассчитать?

Шаговое напряжение

  1. Что такое шаговое напряжение
  2. Максимальный радиус шагового напряжения
  3. Правила перемещения в зоне шагового напряжения
  4. Выход из зоны шагового напряжения
  5. Расчет шагового напряжения
  6. Как освободить человека
  7. Методы снижения шагового напряжения на предприятиях

Что такое шаговое напряжение

Шаговое напряжение – это разность потенциалов (напряжения) на участке в токовой цепи. Показатель шагового напряжения зависит от силы тока и удельного сопротивления почвы. Он представляет собой расстояние (разность потенциалов) между двух ног человека. Величина шагового напряжения используется при создании зануления и заземления, измерении опасности в местах аварий. На значение влияет форма кривой напряжения.

Возле упавшего провода находящегося под напряжением, возникает область рассеивания электричества. На расстоянии от 20 метров до места падения провода, напряжение может не ощущаться, плотность тока становится минимальной.

Опасное для жизни шаговое напряжение наблюдается в местах падения электрического провода высокой мощности на голый грунт. К этому объекту запрещается приближаться на расстояния менее 8 метров. Угроза присутствует и на расстоянии одного метра от заземлителя (металлоконструкции труб, забор из арматуры). Человек рискует, стоя в месте растекания шагового напряжения прикоснуться к металлокострукциям (естественному заземлителю). Опасность кроется в поражении нервной системы – возникают судороги и падение человека на землю.

Действие шагового напряжения прекращается, но внутри тела возникает новый путь электричества. Ток протекает от рук к ногам, в результате возникает реальная угроза смерти. При попадании в такую ситуацию человек должен выходить с опасной зоны гусиным шагом. Минимальное расстояние между ногами – это залог безопасности и благополучного выхода.

Угроза исчезает через 20 метров от источника напряжения высокого потенциала. Категорически запрещается выпрыгивать из области действия высоких потенциалов. При падении на конечности уровень шагового напряжения возрастет, после чего человека ждет смерть.

Максимальный радиус шагового напряжения

8 метров – это максимальный радиус поражения (выше 1000 В). Расстояние с 5 метров характеризуется мощностью ниже 1000 В. При спасении пострадавшего стоит действовать рассудительно. Предварительно обмотайте руки сухой тканью, передвигайтесь небольшими шагами, медленно оттяните человека с опасной зоны.

Угроза попадания в область шагового напряжения существует и в бытовых условиях. В такую ситуацию вы можете попасть, прикоснувшись к оголенному проводу неисправного прибора. В таком случае образуется электрическая цепь, опасная для жизни. Для устранения угрозы в щитке устанавливается устройство защитного отключения. Альтернативный вариант – это разработка системы заземления и контроля потенциалов.

Правила перемещения в зоне шагового напряжения

В промышленных условиях для перемещения в зоне высокого риска шагового напряжения перемещаться следуют в галошах или диэлектрических ботах. При случайном попадании в опасное место нужно замедлить шаг. Максимально сократите расстояние между ногами во время ходьбы – приставляйте носок к пятке, имитируя гусиный шаг. Запрещается приближаться к оголенным проводам на расстояние менее 8 метров, выполнять такие действия допускается при наличии средств защиты.

При возникновении аварий на ЛЭП устранением последствий занимаются специально обученные электрики. Релейная защита отключает участок электрической линии в месте повреждения. Устранив неисправность, специалисты осматривают территорию на предмет обвисших кабелей. Высокая опасность возникает в местах соединения поврежденных кабелей (проводов) и деревьев. Ствол – это проводник электричества, создающий высокий уровень опасности для людей и животных.

Класс напряжения и удельное сопротивление грунта определяют шаговое напряжение. Радиус действия увеличивается при повышении влажности из-за увеличения территории растекания тока.

Выход из зоны шагового напряжения

При выходе из зоны шагового напряжения стоит придерживаться осторожности. Нельзя допускать падения на поверхность земли – такая ситуация может привести к летальному исходу. На грунте влияние электричества повышается, у человека возникают судороги. При отсутствии своевременной помощи, поражение нервной системы приводит к параличу. В этот момент человек испытывает сильную боль и не может шевелить конечностями.

Выбор способа выхода из опасной зоны зависит от конкретной ситуации. После идентификации проблемы необходимо быстро сомкнуть обе ноги вместе, что снизит разницу электрических потенциалов. При передвижении нужно стараться не отрывать нижние конечности от земли.

Помощь могут оказать сухие доски, оказавшиеся по пути выхода с опасной территории. Сухая древесина – это отличный диэлектрик, поэтому смело ступайте на нее во время движения. По пути избегайте кирпичных и железобетонных конструкций.

В некоторых ситуациях целесообразно перемещаться на одной ноге. Выбирать этот способ надо только при полной уверенности в адекватности своего состояния. Напуганный человек может потерять ориентацию и упасть на поверхность земли, что приведет к летальному исходу. Самый надежный способ – это перемещение «гусиным шагом». Не делайте резких движений, не ускоряйте шаг и не бегите. Действуйте спокойно и принимайте взвешенные решения.

При выходе стоит исключить вариант с шагом по спирали и в направлении другого кабеля. При соблюдении правил, у человека есть большие шансы покинуть опасную зону без последствий для здоровья, такие ситуации встречаются в 80% случаев.

Расчет шагового напряжения

Для расчета шагового напряжения необходимо знать особенности распределения тока в месте аварии. Электричество растекается в толще земли и кругами на ее поверхности. Для нахождения значения учитывается величина сопротивления грунта. Напряжение зависит от ряда факторов:

  • расстояние между точками контактов;
  • напряжение воздушной линии;
  • мощность;
  • состояние и удельное сопротивление грунта;
  • состав почвы в опасной зоне.

При расчете шагового напряжения применяются средние величины. Сначала определяется короткое замыкание по формуле:

ICS=UPHASE/(R0+RKONT)

где UPHASE – это напряжение фазы;

RKONT и R0- величина сопротивления для электрического контура (заземления и растекания тока вместе аварии);

ICS – это ток короткого замыкания в сети.

Длину шага принято считать за 0,8 метра. Для нахождения шагового напряжения применяют соотношение:

Где, р – сопротивление поверхности земли удельное;

х- расстояния от оголенного контура;

а – это длина шага.

В промышленных условиях расчетом показателей занимаются отдельные специалисты. Они периодически проводят замеры и находят средние значения для подведения итогов об уровне безопасности.

Как освободить человека?

Для спасения человека необходимо разорвать электрическую сеть – выключить автомат питания (линию) или рубильник. При отсутствии такой возможности обмотать руки сухой тканью, попытаться освободить человека от воздействия электрического тока с помощью деревянной палки.

Далее следуйте алгоритму действий:

  • оттянуть тело в безопасную область;
  • проверить пульс;
  • проконтролировать реакцию зрачков на свет.

Убедитесь, что электрическая линия отключена от источника питания и выходите с опасной зоны.

Начните делать непрямой массаж сердца, легочную реанимацию и вызовите бригаду неотложной помощи. Если человек находится в сознании, поверните его на бок, так вы устраните риск попадания рвотных масс в дыхательные пути.

Методы снижения шагового напряжения на предприятиях

В промышленных условиях создаются правила безопасности и способы предупреждения аварийных ситуаций. Для разработки методов снижения шагового напряжения на предприятии необходимо выделить виды воздействия тока на человека:

  • электрическое;
  • термическое;
  • биологическое.

Для предупреждения воздействия высоких температур специалисты работают в костюме с высоким уровнем защиты от тепла. Такая униформа имеет многослойную структуру и производится из особых синтетических материалов. Они не воспламеняются, защищают кровь и лимфу от перегрева.

Защищает костюм и от электрического воздействия, после превышения которого происходит разложение клеток крови. Для правильного подбора защитных средств стоит знать основные варианты прохождения тока через тело.

Угроза жизни возрастает, если на пути тока встречаются жизненно необходимые органы (сердце и мозг). Из схем можно сделать вывод, что чаще всего электричество начинает путь с руки, головы и ноги. Эти части тела больше всего нуждаются в защите при работе человека в экстремальных условиях. По технике безопасности работник не получает доступ к объекту без специальных средств и прохождения ряда инструктажей.

Причиной аварийной ситуации может стать несоблюдение правил безопасности и контроля за электрическим оборудованием на предприятии. Для предотвращения опасных ситуаций в промышленной сфере проводятся проверки и тестирования. Систематически контролируется изоляция проводов и кабелей, специалисты следят за сроками эксплуатации отдельных элементов системы.

Угроза жизни становится реальной при недостаточной компетентности работников. Незнание элементарных правил безопасности и пренебрежение средствами защиты, часто становится причиной трагедий. Для предупреждения аварийных ситуаций, на предприятиях проводятся целевые и повторные инструктажи, позволяющие сотрудникам повысить уровень квалификации. Вводные инструктажи предназначены для ознакомления специалистов с новым видом оборудования.

Специальные средства защиты на предприятии имеют срок годности. Руководство компании обязано следить за качеством и пригодностью таких вещей. Для повышения контроля за соблюдением правил и стандартов на предприятии создается комиссия по охране труда. Ее сотрудники проводят работы по ознакомлению работников с важной информацией, контролируют выполнение обязанностей и занимаются отчетами в сфере безопасности.

Современные технологии позволяют значительно снизить риск возникновения шагового напряжения. Некоторое оборудование имеет функцию автоматической блокировки при возникновении повреждений в электрической сети. Такие возможности позволяют значительно повысить уровень безопасности и снизить количество несчастных случаев на предприятии.

В комплексе методы снижения шагового напряжения дают отличные результаты. Автоматизированные предприятия, работающие с инновационным оборудованием, практически никогда не встречаются с аварийными ситуациями.

Сегодня средства защиты от электрического тока отличаются высокой эффективностью. При условии правильного использования спецодежды и следования правилам безопасности риск возникновения трагической ситуации значительно снижается. Контроль за всеми процессами в сфере электрики минимизирует шансы поражения током.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: