Регулируемый блок питания своими руками

Универсальный блок питания своими руками: схемы лучших простых и компактных самодельных зарядных устройств (105 фото)

Блок питания предназначен для стабильного и длительного функционирования электроники, обеспечивая приборы напряжением с определёнными параметрами. Устройство является важной частью, и от его надёжности зависит работа всех узлов системы.

Конструктив исполнения разделяет блоки питания (БП) на два типа:

  • Встраиваемый блок питания – находится внутри устройства, которое питает, преобразовывая напряжение сети в необходимое для работы.
  • Внешний блок питания – это обособленный модуль, имеющий собственный корпус и соединяющийся с устройством посредством кабеля.

Модели блоков питания имеют особенности и различаются характеристиками.

  • Блок питания для стабилизации напряжения. Его задача обеспечивать устройства заданным стабильным выходным напряжением, не зависящим от входного, при условии, что величина входного напряжения не выпадает из допустимых пределов, или же устройство не питается большей мощностью, чем выдаёт БП.
  • Блоки питания для стабилизации тока, меняющие величину напряжения при изменённой мощности потребления так, что ток, проходящий через БП, остаётся неизменным.
  • БП для стабилизации напряжения и тока. Когда увеличивается потребляемая мощность, модуль поддерживает фиксированное напряжение при растущем токе. После прохождения тока через питаемый прибор, ток достигает определённого значения. Источник удерживает ток заданного уровня, снижая по необходимости напряжение.
  • Блок питания без стабилизации. Подключается к приборам, которые не критичны к величинам напряжения питания. Величины входного и выходного напряжения в них напрямую зависимы.

Содержимое обзора

Классификация блоков питания

Разница в принципе работы узлов позволяет классифицировать их на:

  • Импульсные – инверторные системы, преобразующие переменный ток в постоянное напряжение высоких частот.
  • Трансформаторные, состоящие из понижающих трансформаторов и выпрямителей. Их функцией является преобразование переменной мощности в постоянную. Дополнением служат фильтры-конденсаторы, позволяющие сглаживать чрезмерность колебаний и пульсаций функционирующих устройств.

Блоки питания, содержащие гасящие конденсаторы. Они похожи на трансформаторные БП, только роль трансформатора в данном узле выполняется неполярными высоковольтными конденсаторами.

Как сделать простой блок питания

Сборка производится по инструкции и схемам блоков питания, приведённым в статье.

  1. Необходимо припаять диодный мост к трансформатору.
  2. К выходу моста припаивается конденсатор.
  3. Кренка питания вольтметра прикручивается к трансформатору, поскольку она не нагревается.
  4. С платы регулятора выпаивается резистор и припаивается два провода для выносного резистора и провода для выходных клемм.
  5. На передней панели корпуса делается разметка под все отверстия.
  6. Вырезаются отверстия для вольтметра и одной клеммы.
  7. Вторая клемма и резистор устанавливаются на стык короба. Они зафиксируются сжатием половинок при сборке.
  8. Устанавливаются вольтметр и клемма.
  9. Затем следует установка регулировочного резистора и второй клеммы.
  10. Для ключа резистора нужно сделать вырез.
  11. Вырезается отверстие для выключателя.
  12. Собирается и закрывается корпус
  13. В заключении надо распаять выключатель.

Прибор готов к работе, на фото самодельного блока питания показано как он выглядит.

Регулируемый блок питания

Стремление людей облегчить труд приводит к созданию новых технологических устройств. Радиодело не является исключением. Поскольку вопрос питания важен, он остаётся одним из основных в процессе сборки электронных приборов. Для изучения предоставляется описание, как сделать регулируемый блок питания своими руками.

БП характеризуются мощностью, стабилизацией напряжения на выходе и отсутствием пульсаций. Важным моментом является универсальность модуля, возможность его применения для питания разных устройств, выдача разного напряжения.

  • Отчасти решить вопрос можно с помощью адаптера, переключающего напряжение. Однако, БП не будет обладать возможностью плавного регулирования, кроме того, в нём не стабилизируется напряжение, то есть на выходе наблюдаются скачки напряжения.
  • Поэтому, предлагается рассмотреть модуль, стабилизирующий и регулирующий выходное напряжение ручкой переменного резистора. Он позволяет плавно регулировать напряжение в диапазоне от 0 до 10,3 Вольта. Показатель задаётся исходя из значений мультиметра, работающего в режиме вольтметра, при постоянном токе.
  • Монтаж регулируемого блока питания приводится по стандартной схеме, существующей с конца прошлого века. Модуль выдаёт мощность с максимальным значением 800-900 МА, в условиях наличия трансформатора с необходимой мощностью.
  • В этом варианте сборки применяется диодный мост, допускающий максимальное значение тока 1А.

При необходимости увеличения мощности БП, используется диодный мост, трансформатор с больше мощностью, и увеличивается площадь радиатора. Если размеры корпуса не позволяют такую установку, применяется принцип охлаждения (кулер).

  • Транзистор (можно использовать КТ805АМ) крепится на радиатор. Если корпус из металла, необходима слюдяная прокладка, устанавливающаяся между транзисторной пластиной (металлической) и радиатором.
  • Теплоотдачу от транзистора к радиатору можно улучшить термопастой (к примеру, КПТ-8).
  • Трансформатор должен выдавать 13 Вольт на вторичной обмотке (допустим диапазон от 12 до 14 Вольт).

Подобные монтажи подразумевают установку фильтрующих электролитических конденсаторов, напряжением 25 Вольт. Ёмкость 2200 МКФ, допускается большая ёмкость, а вот меньшая не желательна. Подойдёт и конденсатор для большего напряжения, если устроит его размер.

Подключение мощного транзистора и переменного резистора можно проделать навесным монтажом, с помощью проводов. Если после подключения обнаружится, что контакты потенциометра спутаны, то есть минимальные показания оказываются слева, а максимальные регулируются вправо, необходимо поменять местами провода, идущие в направлении к крайним выводам резисторов переменного сопротивления. В данной схеме предусматривается светодиодная индикация включения.

Читайте также:
Плюсы, минусы и особенности однотонных матовых потолков

Выключение и включение производится тумблером, через коммутацию питания в 220 Вольт, которое подводится к первичной трансформаторной обмотке.

На модуль питание доставляется при помощи стандартного кабеля, который отсоединяется, и разъёма компьютерного БП.

Самостоятельный ремонт

Если работа БП нарушена, не стоит спешить отдавать его в сервис, некоторые сбои в работе блока можно устранить самостоятельно. В этом разделе рассматривается, как отремонтировать блок питания своими руками. Могут понадобиться паяльник и отвёртка.

Проверка предохранителя на входе – это первое, что нужно сделать. Конечно, он может быть впаян, но иногда он размещён в специальных посадочных гнёздах.

  • Предохранители чаще всего горят от повышенной нагрузки при работе устройства или, как результат, короткого замыкания. Замена сгоревшего элемента производится аналогичным, либо на элемент, имеющий больший ток срабатывания, однако разница не должна превышать 1А.
  • Следующий этап проверки – сетевой фильтр, который построен на конденсаторах, импульсном трансформаторе (высокочастотном) и диодном мосте.
  • Визуальный осмотр может выявить вздувшийся электролитический конденсатор, который заменяется аналогичным по ёмкости с подобным или более высоким значением работающего напряжения.

  • Соответствие габаритов;
  • Соблюдение полярности.

Используя омметр, можно проверить диодный мост на исправность. Сопротивление в районе 500 Ом покажет прибор на рабочем диоде, инверсное подключение заставит сопротивление стремиться к бесконечности. Если это не так, элемент необходимо заменить.

В случаях вздутия всех или большей части конденсаторов, самостоятельный ремонт не имеет смысла, потому что это значит, что проблема глубже и необходима проверка других узлов схемы квалифицированным мастером.

С подгоревшими транзистором и резистором аналогичная ситуация. Следует доверить ремонт сервисному центру.

Как видно, сборка блоков питания и устранение простых неисправностей самостоятельными усилиями доступны. Нужно лишь изучить приведённые схемы и описания.

Лабораторный блок питания на транзисторах

Лабораторный блок питания (ЛБП), представленный в этой статье, имеет простую, но в то же время надежную и хорошо повторяемую схему. В качестве основных компонентов устройства используются биполярные транзисторы. ЛБП может служить для: тестирования силовых транзисторов, питания светодиодов (LED-панелей), зарядки различных типов аккумуляторов, питания электронных устройств напряжением 0–40В и током до 2,5А.

В качестве защиты от короткого замыкания лабораторного блока питания используется стабилизация выходного тока. Порог максимального тока можно установить с помощью подстроечного резистора в пределе 0,5–2,5А. Регулировка тока нагрузки в процессе эксплуатации выполняется от нуля до установленного порога с помощью переменного резистора.

Верхний предел выходного напряжения также может быть установлен с помощью подстроечного резистора в диапазоне 10–40В. Регулировка выходного напряжения в процессе эксплуатации осуществляется переменным резистором от нуля до установленного порога.

  1. Схема лабораторного блока питания на транзисторах
  2. Компоненты схемы
  3. Печатная плата лабораторного блока питания
  4. Выпрямитель лабораторного блока питания
  5. Охлаждение лабораторного блока питания
  6. Запуск и налаживание лабораторного блока питания

Схема лабораторного блока питания на транзисторах

Схема ЛБП надежная и имеет хорошую повторяемость, взята она из журнала Elektor Electronics №4 1999 года. Оригинал этой статьи можно скачать в формате PDF, ссылка под данной статьей.

На схеме присутствует только блок самого стабилизатора. Отсутствие выпрямителя обусловлено неопределенностью номиналов компонентов исходя из конкретных параметров лабораторного блока питания.

Транзисторы T5 и T6 образуют дифференциальный усилитель, который сравнивает часть опорного напряжения с напряжением на выходе ЛБП. Опорное напряжение образует параметрический стабилизатор R7D2D3. Часть его отбирается переменным резистором P1. Выходное значение напряжения берется с делителя P4R5.

Когда Uвых ЛБП возрастает, то и на делителе P4R5 падение напряжения увеличивается. Когда значение на делителе станет больше чем установленное потенциометром P1, то транзистор T5 прикроется больше чем T6 и на резисторе R2 падение увеличится. Вследствие чего транзистор T4 откроется и подтянет базу T3 к общему проводу (Gnd). Транзисторы T3, T4 и силовой регулирующий транзистор T1 прикроются, уменьшив выходное напряжение лабораторного блока питания, до тех пор, пока значения на базах (T5 и T6) дифференциального усилителя не станут равными.

Транзистор T7 отвечает за стабилизацию тока. Его датчиком является резистор R4, через который протекает весть ток нагрузки. При возрастании тока на датчике R4, а, следовательно, и на цепи P3R6P2 падение напряжения также повысится. Это падение через токоограничивающий резистор R8 попадает на базу T7. При достижении определенного значения транзистор T7 открывается и подтягивает базу T3 через резистор R2 к общему проводу (Gnd) и на выходе эмиттерного повторителя напряжение начнет снижаться. Так работает стабилизация тока.

Максимальный (предельно возможный) ток ЛБП устанавливается подстроечным резистором P3. При P3=0, максимальный выходной ток составит 2,5А, а при P3=250кОм максимальное значение составит 500мА.

Регулировка тока нагрузки ЛБП выполняется вращением движка потенциометра P2.

Максимальное (предельное) напряжение на выходе ЛБП устанавливается подстроечным резистором P4. При P4=0 максимальное Uout=10В, а при P4=25кОм Uout=40В.

Регулировка выходного напряжения осуществляется потенциометром P1.

Компоненты схемы

В качестве подстроечных резисторов P3 и P4 лучше применить многооборотные компоненты типа «3296W». Причем, номиналы 250кОм и 25кОм я не нашел и вместо них поставил 200кОм и 20кОм.

Читайте также:
Роторные двери: межкомнатные модели с роторным механизмом, чем отличаются от обычных двери роторного типа, плюсы и минусы

Резистор R7 должен быть мощностью 0,5Вт. Шунт R4 лучше поставить мощностью 5Вт (греется здорово).

В качестве стабилитрона D2 я установил BZX55C 2V4, а в качестве стабилитрона D3 я установил 1N4740A.

Силовой транзистор 2N3055 можно заменить на более мощный NPN транзистор, например TIP35C, 2SC5200 или другой им подобный, но напрямую в плату их устанавливать нельзя, цоколевка не подходит, необходимо редактировать печатную плату, поэтому устанавливаем на проводах.

Транзисторы BC547/BC557 меняются на BC546/BC556.

Транзисторы дифференциального каскада (T5 и T6) желательно подобрать по коэффициенту передачи тока (h21э).

Печатная плата лабораторного блока питания

Печатную плату ЛБП я разводил под свои нужды и размеры компонентов, ссылка на нее под статьей. При желании вы можете ее откорректировать под свои требования.

Размер печатной платы 84×65 мм. На ней есть подписи порядковых номеров компонентов и их значения.

Обратите внимание на номера выводов переменных резисторов P1 и P2 (P2 относительно P1 развернут на угол 180 0 ). У меня они устанавливаются на шлейфах, поэтому проблем с этим нет.

Потенциометры не рекомендую устанавливать через разъемы, показанные ниже на фото. При потере их контакта, может произойти скачок выходного напряжения или не работать стабилизация по току, что приведет к выходу из строя T1.

Рядом с выходом на печатной плате ЛБП имеются ножевые клеммы с надписями «black», «yellow» и «red» для подключения китайского вольтамперметра. Если вы не применяете такой вольтамперметр, то просто впаиваем перемычки между клеммами «black» и «red».

А вообще, я не советую применять 4-разрядные китайские вольтамперметры, похожие на мой, так как у них малая частота обновления показаний. Очень неудобно им пользоваться и устанавливать необходимое значение.

Транзистор T1 соединяется с печатной платой с помощью проводов, в соответствии с цоколевкой на 2N3055.

Выпрямитель лабораторного блока питания

На схеме выпрямитель отсутствует. Автор схемы предусматривает его расчет индивидуально, под необходимые параметры.

Диодный мост я установил с токовым запасом. Мост KBU610 рассчитан на 6А 1000В, а также на его корпусе есть отверстие для крепления теплоотвода. Также подойдет и любой другой диодный мост на 4А и мощнее. При выборе рекомендую взять запас, цена от этого возрастет незначительно.

Емкость фильтра выпрямителя для лабораторного блока питания также рассчитывается индивидуально, исходя из требований пульсаций и параметров трансформатора. На моей печатной плате имеются два посадочных места под электролитические конденсаторы 3300мкФ 50В. Можно обойтись и грубым расчетом – 1000мкФ на каждый 1А.

Трансформатор, примененный мною, имеет две обмотки по 25В, и каждая обмотка рассчитана на 1,8А. Эти обмотки я соединил параллельно (соблюдая фазировку).

Вообще ток обмотки должен быть рассчитан на превышение тока нагрузки в √2 раз, то есть для нагрузки 2А обмотка должна быть рассчитана на 2,8А.

Не стоит забывать и про выпрямленное напряжение, которое после выпрямления, на холостом ходу, на конденсаторе фильтра будет иметь значение в √2 раз больше. То есть, для трансформатора напряжением 25В после выпрямления на емкости фильтра (C4 и C5) получится примерно 35В постоянного тока.

Внимание! Для данного лабораторного блока питания я настоятельно рекомендую не применять трансформатор с напряжением вторичной обмотки более 27В. Это обусловлено напряжением перехода коллектор-эмиттер транзисторов BC547/BC557 (оно составляет 45В) и другими предельными параметрами примененных компонентов.

Охлаждение лабораторного блока питания

Самым горячим элементом лабораторного блока питания является регулирующий силовой транзистор T1. Тепло, рассеиваемое на нем пропорционально разнице между входным и выходным значениями напряжения. Транзистор 2N3055 способен рассеять максимум 115Вт.

Таким образом, если на входе стабилизатора 37В, а на выходе мы установим значение 3В, то при токе 2,5А на транзисторе рассеивается примерно (не учитывая падение на шунте R4):

Это рядом с максимумом, учитывая, что транзистор T1 будет работать в линейном режиме и отвести от него такое количество тепла будет очень сложно. Выходом будет применение радиатора с вентилятором от ПК или применение радиатора с достаточно большой площадью поверхности (читать ниже).

При эксплуатации лабораторного блока питания с нагрузкой 1,5А – 2,5А на диодный мост можно установить небольшой теплоотвод в виде алюминиевой пластинки.

Если представить максимально тяжелый режим и на выходе лабораторного блока питания будет короткое замыкание, то в этом случае на транзисторе T1 упадет практически все напряжение (без учета падения на R4), пусть это падение будет равно 35В (берем по максимуму). При этом максимальный ток будет равен 2,5А. Мощность, рассеиваемая на транзисторе T1, будет примерно равна 80-90 Вт. Для такой мощности необходим радиатор с площадью поверхности 1500 – 2000 см 2 .

Запуск и налаживание лабораторного блока питания

  1. Проверить все номиналы компонентов по схеме (и печатной плате) ЛБП.
  2. Смыть все остатки флюса и других вспомогательных веществ.
  3. Подключить трансформатор к клеммам «AC». Лабораторный блок должен быть не нагружен – режим холостого хода.
  4. Ручки переменных резисторов P1 и P2 до упора повернуть по часовой стрелке (на максимум).
  5. К выходу ЛБП подключить вольтметр постоянного тока, выбрав необходимый диапазон измерения.
  6. Включить в сеть трансформатор и по вольтметру убедиться в присутствии напряжения на выходе лабораторного блока питания.
  7. Плавно вращая движок подстроечного резистора P4 установить необходимое максимальное значение. Это будет верхний предел выходного напряжения блока питания. Я установил значение 30В.
  8. Нагрузить ЛБП постоянным резистором или электронной нагрузкой так, чтобы максимально возможный ток нагрузки не превышал 500мА. Я нагрузил ЛБП резистором 60 Ом 5Вт (ставим 60-100Ом) и поместил его в ванночку с водой. Путем вращения движка подстроечного резистора P3 выставить ток 200 мА (предварительно подключить амперметр постоянного тока в разрыв нагрузки). Прогнать ЛБП на этой нагрузке в течение 10-20 минут. Понаблюдать за нагревом. Напряжение при стабилизации тока просядет до нескольких вольт, это нормально.
  9. Снять нагрузку. Кратковременно замкнуть выход лабораторного блока питания перемычкой. Убедившись, что ЛБП держит короткое замыкание (КЗ), при этом, ток нагрузки остается примерно равный ранее выставленному пределу (200 мА).
  10. Замыкаем выход резистором сопротивлением 4-15 Ом и плавно вращая, против часовой стрелки, движок P3 устанавливаем предельно максимальный ток ЛБП. Исходя из малых габаритов своего теплоотвода, я обошелся значением 1А. Если соблюдать все номиналы схемы, то максимум можно выставить 2,5А.
  11. Опять снимаем нагрузку и снова устраиваем режим короткого замыкания, убеждаясь, что лабораторный блок его успешно терпит.
Читайте также:
Роскошные интерьеры квартир - фото-отчет проекта жилья в Нью-Йорке

Пункты 8 и 9 рекомендую обязательно выполнять. Если не сработает схема стабилизации тока, и вы замкнете выход или нагрузите ЛБП больше чем положено, то моментально выйдет из строя силовой транзистор.

Печатная плата лабораторного блока питания на транзисторах СКАЧАТЬ

Оригинальная статья Elektor Electronics №4 1999 СКАЧАТЬ

Просто и недорого! Как сделать ремонт строительного фена своими руками?

Хороший строительный фен стоит достаточно дорого. Но даже самые качественные модели со временем могут выйти из строя. Ремонтировать их самостоятельно выгоднее, чем отдавать в сервисный центр. Устройство фена простое, каждый может починить его в домашних условиях. В статье подробно разобрано какие поломки могут возникнуть, как их устранить самостоятельно не обращаясь к мастеру, дана схема ремонтных работ, а так же приведены советы экспертов.

Устройство прибора

Основные элементы, из которых состоит строительный фен:

  • двигатель;
  • нагревательный элемент;
  • вентилятор.

Мощность у аппарата большая, а производительность зависит от количества литров воздуха, которое пропускает фен за минуту.

У многих современных моделей есть такие функции:

  • регулировка потока воздуха и температуры;
  • выбор нужного рабочего режима;
  • насадки, упрощающие работу с материалами различной прочности;
  • определяющий температуру нагрева светодиодный индикатор.

Кроме этих элементов, внутри механизма есть дополнительные, которые играют важную роль в работе фена:

  1. Кнопка выключения. Иногда со встроенным регулятором температуры.
  2. Регулятор температуры. Выходящий из сопла инструмента воздух нагревается за счёт этого датчика.
  3. Сменные насадки. Они крепятся на сопло.

Принцип работы

Принцип работы можно описать следующими пунктами:

  1. Запуск инструмента одновременно с работой электродвигателя и ТЭНа.
  2. Вентилятор, который прикрепляется на вал двигателя, обеспечивает вывод потока горячего воздуха из сопла. Его функция состоит в охлаждении нагревательной спирали, предотвращении её расплавления.

Без работы двигателя не смогут работать ТЭНы. Они просто выйдут из строя через несколько минут или даже секунд. Если на них прикреплена дополнительная защита, то есть вероятность, что ТЭН не перегреется, не сломается. Без работы этих элементов из сопла не сможет выходить прогретый воздух. Будет дуть только холодный.

Какие могут возникнуть поломки?

Проблемы с кнопками и переключателями

Кнопки фена заедают из-за того, что на переключателе появляются нагар, окись. Эти дефекты не позволяют пройти электрическому току по контактам. Для выявления неисправности переключателя и кнопки пользуются мультиметром.

Для этого в режиме прозвона нужно коснуться щупами выводов кнопки. Если прибор отключён, то он не должен издавать никаких посторонних шумов. Особенно подозрительны посвистывания. При включении первого — второго режимов в исправном состоянии переключателей должен издаваться еле слышный звук. В этом кроется причина: неисправны другие узлы в системе.

Разобрав фен, нужно прочистить все соединительные контакты, которые на поверхности имеют ржавчину или иные попавшие извне элементы. Иногда достаточно заменить переключатели на новые, чтобы устройство исправно заработало.

Неисправность сетевого провода

Визуально обнаружить неисправность сетевого провода невозможно. Происходит повреждение жил внутри изоляции, которые снаружи совсем не видны.

Повреждение провода возникает как по механическим причинам, например, передавливание провода дверью, так и из-за долгой эксплуатации прибора на максимальной мощности. Жила перегревается, перегорает, медный материал в результате этого становится хрупким, ломким.

Мультиметром можно диагностировать поломку этой части, следуя инструкции:

  1. разбирается фен;
  2. включается на мультиметре режим прозвона;
  3. к контакту вилки подключается один щуп от мультиметра;
  4. второй щуп поочерёдно прикладывают к контактам на клеммной колодке;
  5. если какой-то из контактов подаёт сигнал при такой манипуляции, значит, одна из жил ещё рабочая, а проблема заключается в другой жиле;
  6. подключается щуп на второй контакт вилки, и процедура продолжается;
  7. мультиметр должен издать звук при прикосновении ко второй клеммной колодке.
Читайте также:
Поглотитель влаги для дома: виды осушителей, влагоулавливатель своими руками

Неисправность коллекторного двигателя

Чтобы уточнить проблему с коллекторным двигателем, необходимо применить мультиметр. Выполняют им прозвон, а затем подключают к источнику постоянного напряжения необходимой величины. Плату с диодным мостом отсоединяют, если нет источника переменного напряжения необходимой величины.

Чтобы осуществить прозвон электромотора мультиметром, необходимо к щупам подвести выводные контакты устройства. Появившееся сопротивление — сигнал, что обмотка не повреждена. Двигатель неисправен, когда издаются нехарактерные звуки. В данном случае можно услышать пощёлкивание или скрежет.

Нужно разобрать устройство, вытащить двигатель. Починить его можно путём прочистки соединительных деталей. От долгой работы пружины двигателя могут засоряться. Но проблема может состоять и в другом. Движок может быть выпущен производителем с браком, который никак невозможно исправить подручными средствами. Необходимо поменять коллекторный двигатель на более надёжный.

Перегорела плата и спираль

Диагностику неисправности спирали и платы выполняют по следующей схеме:

  1. извлекается нагревательный элемент из металлической колбы;
  2. осматриваются провода на наличие подключения их к контактам спирали ТЭНа;
  3. на этом этапе уже можно увидеть возможную поломку: окисление контактов или отсоединение одного из проводов;
  4. в режиме измерения сопротивления включается мультиметр, подключается к контактам спирали;
  5. нарушение целостности нихромовой нити определяется нулевым значением прибора: спирали должны показывать сопротивление.

Если спираль имеет обрыв и повреждения в разных местах, то её нужно заменить на новую. Простой обрыв можно устранить путём соединения двух частей спирали. Для этого потребуется воспользоваться маленькими болтиками и гайками.

Неполадки с платой зависят от используемой модели этого элемента. Устаревшие модели содержат только одну плату – выпрямительный диодный мост. Его можно исправить простым паяльником. Если строительный фен снабжён инверторной платой, то, осмотрев, можно обнаружить неисправность. Перегоревшие детали имеют потемневший окрас. Паяльником удаляется весь ненужный налёт.

Как отремонтировать инструмент: схема

Сначала проводят диагностику строительного фена. Выполняют это визуальным путём и опытным. Для непосредственного ремонта своими руками применяют отвёртку и паяльник. Чтобы заменить нужную деталь, необходимо заранее её приобрести.

  1. Замена спирали производится с учётом значения сопротивления. Отсоединённые проводники припаиваются на место.
  2. Чтобы заменить конденсатор, деталь выбирают с учётом характеристик мощности и по номинальному значению напряжения.
  3. Внешний провод меняется путём разбора фена (его корпуса). Сначала отсоединяют повреждённый провод, проверяют исправность остальных. Когда новый провод будет подсоединён, то проверяют исправность всех проводов и самого устройства. Только потом собирают корпус инструмента, подключают к электрической сети.

Схема ремонта строительного фена:

Советы экспертов

Эксперты советуют придерживаться следующих рекомендаций:

  1. Причина поломки выявляется путём диагностики строительного фена. Не лишним будет выполнить разбор прибора, даже если дефект виден визуально.
  2. Чтобы после разбора и устранения неполадки правильно собрать прибор, необходимо фиксировать все расположенные детали путём фотоаппарата. Можно начертить схему, но это труднее и требует детального, кропотливого разбора составляющих элементов.
  3. При включении прибора исходит характерный еле слышимый звук. Если его вовсе нет либо появляются скрипы или шелест, то однозначно проблема — в движке.

Отремонтировать строительные фены достаточно легко, если всё делать правильно. Для этого нужно соблюдать чёткую последовательность действий, чтобы выявить поломку и быстро её устранить.

Полезное видео

Предлагаем посмотреть видео о разборке и ремонте строительного фена:

Как отремонтировать строительный фен виды поломок и их устранение

25 Февраль 2019

В арсенале у домашнего мастера кроме дрели, шуруповерта, перфоратора и лобзика, должен также присутствовать строительный фен. Это прибор, который имеет простую конструкцию, и применяется для выполнения разных работ — от снятия лакокрасочного покрытия до растапливания льда. Принцип работы инструмента подобен бытовому фену, которым пользуются женщины для высушивания волос. При эксплуатации не исключается возникновение разных поломок, поэтому разобраться в вопросе о том, как выполняется ремонт строительного фена, является достаточно актуальным.

Что такое строительный фен и его конструктивные особенности

Феном строительным называется инструмент, который по конструкции похож с бытовым феном, но главной его отличительной особенностью является более мощный электромотор и нагревательный элемент. Внутри корпуса, который обычно представлен в виде ударопрочного пластика, находятся такие элементы, как электромотор, нагревательные элементы в виде спиралей и вентилятор. Кроме основных элементов, в конструкции оборудования имеются также следующие детали:

  1. Кнопка выключения — некоторые модели строительных фенов имеют кнопки со встроенными регуляторами температуры
  2. Регулятор температуры — устройство, посредством которого происходит настройка температуры нагрева воздуха, выходящего из сопла инструмента
  3. Сменные насадки — комплектуются практически все модели строительных фенов. Насадки крепятся на сопло, что позволяет использовать прибор для выполнения разных видов работ

С принципом работы рассматриваемого прибора может разобраться даже ребенок, однако фен — это далеко не детский инструмент, к эксплуатации которого требуется соответствующий подход. Работа прибора заключается в выполнении следующих действий:

  • При запуске инструмента, одновременно начинает работать электродвигатель и ТЭН
  • На вал двигателя крепится вентилятор, назначение которого в том, чтобы обеспечивать вывод потока горячего воздуха из сопла и одновременно охлаждать нагревательные спирали, предотвращая их расплавление
  • Если двигатель не будет работать, то ТЭН перегреется и выйдет из строя уже через несколько секунд после включения прибора (при условии отсутствия защиты)
  • Если не будут работать ТЭНы, то из сопла инструмента будет выходить только холодный поток воздуха
Читайте также:
Обзор сушилок для белья на балкон

Если в один момент фен перестает работать, то не спешите покупать новый прибор. Не стоит торопиться обращаться в специализированные сервисные центры, так как ремонт можно сделать своими руками. Заключается суть ремонта в том, чтобы отыскать причину неисправности, и устранить ее. Для устранения поломок имеются два способа — замена неисправной детали или попытка восстановления ее работоспособности.

Это интересно! В отличие от дрели или перфоратора, монтажный фен состоит из электрической части, поэтому практически все поломки, связанные с его неисправностью — это неисправности электрики.

Какие поломки встречаются в конструкции строительных фенов

Не имеет значения, какой марки и модели строительный фен — Энкор, Интрескол, Интертул, Бош, Эдон и другие, так как рано или поздно, все они ломаются. Связано это непосредственно с неправильной эксплуатацией оборудования. Если мастер халатно относится к применению рассматриваемого прибора, то уже в скором времени обязательно понадобится его ремонт. Произвести ремонт строительного фена не составит большого труда, если имеется представление о его конструкции и принципе работы. Поломки фена можно классифицировать на два типа:

  • Основные и незначительные — это когда неисправность прибора связана с перегибом шнура, поломкой кнопки выключения, а также выходом из строя регулятора
  • Глобальные поломки — это когда неисправность инструмента связана с выходом из строя двигателя и ТЭНов

В любом случае, выявить на глаз поломку фена без его разборки невозможно, поэтому начинать ремонт инструмента следует с поиска поломки. Незначительные поломки можно устранить без замены деталей, например, когда отсутствует контакт в питающем проводе. Провод обеспечивает питание не только на электромотор, но еще и на нагревательные элементы. Если перебит провод, то инструмент не будет работать вовсе, а если неисправность связана с неработоспособностью двигателя или ТЭНа, то поиск необходимо проводить непосредственно в этих узлах.

Это интересно! Чтобы найти поломку, понадобится разобрать инструмент. В зависимости от модели, количество крепежных винтов может отличаться, однако принцип разборки заключается в том, что первоначально следует выкрутить все крепежи.

Как найти поломку в строительном фене и устранить ее

Начинать ремонт строительного фена надо с самого начала, продвигаясь от меньшего к большему. Сначала надо убедиться в том, что в розетке имеется электроэнергия. Ведь часто неисправная работа прибора связана с отсутствием напряжения в сети. Используя мультиметр или индикаторную отвертку, следует проверить наличие напряжения. Если с розеткой все в порядке, тогда производится проверка питающего провода. Для этого в режиме прозвонки мультиметра, следует проверить исправность каждой жилы провода.

Если провод перебит или нарушена его изоляция, то ремонт в таком случае заключается в соединении жилы и последующей ее изоляцией. Если причина поломки не в проводе и розетке, тогда приступаем к глобальному поиску неисправностей.

  1. Если фен не включается — в таком случае проверить необходимо исправность кнопки включения, двигателя и ТЭНа. Если неисправен регулятор, то прибор будет работать, но при этом невозможно будет выставить нужную температуру нагрева
  2. Если прибор работает с перебоями — при неисправности электромотора, будут возникать сбои с работой инструмента. Проявляются они достаточно просто — не работает нагревательный элемент или включается ТЭН, но при этом вентилятор не дует горячий воздух
  3. При переключении режимов работы, прибор постоянно работает в одном режиме. Это означает, что из строя вышел регулятор температуры. Принцип работы этого элемента влияет на увеличение температуры нагревательных спиралей, а также частоты вращения вентилятора

Так как инструмент состоит из электрических элементов, то для диагностики понадобится воспользоваться мультиметром. С его помощью можно выявить точную поломку, и устранить ее. Для начала рассмотрим виды неисправностей фена монтажного по электронике.

Неисправности в электронике фена

При работе инструмента из строя могут выйти элементы электроники — диоды и конденсаторы. Диоды в конструкции прибора нужны для выпрямления поступающего переменного тока в постоянный. На фенах используются маломощные электромоторы постоянного тока, что позволяет значительно снизить потребление электроэнергии, а также увеличить производительность оборудования.

При скачках напряжения прежде всего страдают именно эти элементы, поэтому с целью сглаживания напряжения, в конструкции применяется ферритовый сердечник. Кроме того, на схеме имеются конденсаторы, предназначенные для сглаживания величины напряжения, исключая тем самым выход из строя электромотора. В конструкции электроприбора часто встречаются такие виды неисправностей:

  1. Окисляются контакты кнопки пуска
  2. Образование окислов на контактах регулятора скорости
  3. Возникновение отложений на контактах ТЭНа
  4. Выход из строя резисторов, конденсаторов, диодов и симистора. Для выявления неисправностей в этих элементах понадобится мультиметр

Чтобы проверить целостность резистора, необходимо мультиметром измерить их величину сопротивления. Проверка диодов выполняется путем прозвонки. В одном направлении диоды пропускают ток, а в обратном ограничивают его протекание. Для проверки исправности конденсатора, понадобится перевести регулятор прибора в измерение емкости, и установить предварительно отпаянный элемент в специальные углубления устройства. Чтобы не отпаивать элемент, можно прикоснуться к его ножкам щупами, и проверить емкость.

Читайте также:
Почему бьет током и как сделать заземление для водонагревателя электротитан?

Это интересно! Определить неисправность конденсатора можно по внешнему его виду. Его неисправность проявляется путем вздутия элемента, что обусловлено протеканием через элемент большого тока.

Устранить поломки элементов электроники на плате можно быстро путем их перепайки на аналогичные по величине. Для этого понадобится паяльник, а также олово и канифоль. Чтобы вернуть исправность фену, достаточно заменить один элемент, и продолжить эксплуатацию прибора.

Если из строя выходит электромотор

Если диагностика показывает, что из строя на монтажном фене вышел электромотор, то его следует заменить. На фенах двигатели постоянного тока состоят из ротора (якоря) с обмоткой, а также статора из магнитов. Для подачи тока на якорь, в конструкции двигателя используется коллектор. Он состоит из медных пластин, которые соединены с выводами обмотки ротора. Если возникает неисправность двигателя, то достаточно заменить якорь, чтобы продолжить эксплуатацию электроинструмента.

Это интересно! При выборе нового якоря, понадобится указать марку и модель своего инструмента, так как двигателя разных производителей отличаются по размерам.

Когда возникает неисправность нагревательной спирали

Если на фене из строя выходит нагревательная спираль, то для ее ремонта можно воспользоваться паяльником или заменить этот элемент, что будет намного надежней. Спираль из специального термостойкого металла, намотана на керамическую часть. При включении прибора, происходит нагрев спиралей, а вентилятор, приводящийся в действие от электромотора, нагнетает воздух, охлаждая при этом ТЭНы. Если перегорает ТЭН в одном месте, то прибор работать не будет.

Причинами неисправности ТЭНа являются такие факторы:

  • Значительный перегрев спирали, который приводит к нарушению целостности элемента
  • Скачки напряжения, что также способствует пробою в спирали
  • Износ — при регулярном применении инструмента, наблюдается ускоренный износ спиралей и их выход из строя

Если из строя вышла спираль на фене, то ее можно заменить, но исключительно на аналогичную по длине и диаметру. Параметры проволоки необходимо учитывать для того, чтобы исключить вероятность ее перегорания от мощности прибора. Недостаточное сопротивление спирали повлечет за собой ускоренный износ ТЭНа, а высокое наоборот повлечет за собой снижение производительности прибора. При покупке запчастей для фена, необходимо опираться непосредственно на марку и модель.

Выводы о ремонте строительных фенов своими руками

Ремонт строительного фена своими руками выполнить вполне реально, если подойти к этому вопросу с правильной стороны. Для устранения поломки порой не нужно разбирать инструмент, так как дефект может скрываться в кабеле. Для этого в кабеле необходимо отыскать место повреждения, и переизолировать кабель. После разборки инструмента, его необходимо осмотреть, очистить и провести диагностику.

За время эксплуатации инструмента могут возникнуть разные поломки, устранить которые можно своими руками. Одной из самых частых причин поломок являются неисправности с элементами на схеме. При ремонте также необходимо учитывать, что питание на двигатель поступает через спираль, поэтому если неисправен нагревательный элемент, то и двигатель соответственно работать не будет. Чтобы убедиться в работоспособности мотора, необходимо проверить его на автономном источнике питания на 12В.

Подводя итог, надо отметить, что если починить строительный фен не получается, то можно купить новый в интернет магазине Цилиндр. В каталоге магазина представлено много разных моделей инструментов, которые обязательно будут полезны не только в хозяйстве.

Доработка и ремонт спирали строительного фена своими руками

В этой статье мы расскажем вам о строительных фенах, причинах их основных неисправностей, способах их устранения. Кроме того, опишем некоторые способы модернизации и доработок, которые можно сделать с вашим инструментом.

Схема фена

На рисунке, представленном ниже, показана электрическая схема строительного фена.

Основными элементами инструмента являются двигатель, вентилятор и нагревательный элемент.

Нагревательный элемент для фена

Нагревательный элемент является не чем иным, как спиралью, которая намотана на керамическую основу. Во многих моделях производитель встраивает термодатчик, который в случае перегрева отключает питание фена. В качестве материала спирали обычно используют нихром. Обладая определенным сопротивлением, спираль забирает часть тепла при прохождении тока через нее и отдает его в окружающую среду, тем самым обеспечивая непрерывный горячий поток воздуха.

Неисправности строительного фена

При интенсивном использовании инструмента нередки его поломки. Они бывают самыми различными. Мы сейчас расскажем, как разобраться, что конкретно может сломаться.

Первым делом нужно провести визуальный осмотр фена. Пристальное внимание следует обратить на кнопки, переключатели, шнур питания, вилку. Довольно частой причиной поломки является нарушение изоляции или обрыв провода в местах соединения с корпусом. При повреждении провода его нужно зачистить в этом месте и заизолировать клеящей лентой. При неисправности кнопок включения и переключения температурных режимов их следует заменить на новые.

Если же причина не в этом, тогда следует провести диагностику работы инструмента в разных режимах. Фен может подавать только холодный воздух. В этом случае требуется осмотреть нагревательный элемент прибора – спираль. При отсутствии подачи воздуха ваше внимание следует обратить на вентилятор или двигатель. Замена нагревательного элемента, вентилятора или проводов сама по себе несложная и недорогостоящая процедура, чего не скажешь о замене электродвигателя. При его поломке ремонт фена становится бессмысленным.

Читайте также:
Сколько воды выдерживает натяжной потолок

Доработка строительного фена

В процессе работы пользователя могут не устроить некоторые конструктивные заводские решения, поэтому он принимает решение доработать фен.

Вообще, модернизация инструмента может быть направлена на определенные цели. Некоторые из них мы приведем ниже:

  • Возможность применения различных насадок.
  • Регулировка силы воздушного потока при монтаже мелких деталей.
  • Сделать независимым отключение спирали от вентилятора и наоборот – для быстрого охлаждения инструмента.

Поговорим отдельно о вариантах доработки различных элементов конструкции инструмента

  1. Нагревательный элемент. Здесь возможно удаление стандартной нагревательной спирали и замена ее на термопару. Чтобы это сделать, необходимо удалить спираль вместе с двумя проводами белого цвета, идущими на питание двигателя. Термопредохранитель подключается обжимкой к противоположному концу спирали. Сама термопара должна пройти через свободный канал. Ее конец должен быть подключен к плате винтами.
  2. Блок управления двигателем. В этом блоке управление воздушным потоком происходит за счет изменения оборотов двигателя вентилятора. Те, в свою очередь, зависят от напряжения. Самым простым будет управление через ШИМ (широтно-импульсная модуляция). В этом случае интеллектуальный транзистор необходимо заменить на полевой с «логическим входом».

Ремонт строительных фенов

При эксплуатации инструмента проявляются определенные неисправности. Разберем на примере опыта пользователя фена фирмы «Интерскол». Что может ожидать вас в будущем?

  • На первом году жизни фена стала невозможной регулировка температуры – причина крылась в перегреве симистора и выходе его из строя.
  • Привычный уже нам перелом кабеля питания в точке примыкания к корпусу инструмента. Эта проблема решается путем установки кабеля в двойной резиновой изоляции.
  • Произошел обрыв обмотки нагревателя высокого сопротивления. Причиной мог быть как заводской брак, так и перетирание нихромовой обмотки о края керамики вследствие процессов нагрева-охлаждения. В процессе замены обмотки пришлось заменить и термопредохранитель, сработавший при внезапной остановке двигателя.
  • К концу второго года эксплуатации вышли из строя подшипники скольжения в двигателе.

Это обычный список неисправностей, которые могут возникнуть в устройстве на протяжении трех лет эксплуатации инструмента. Кроме этого, были другие незначительные дефекты вроде пропадания напряжения на спирали нагревательного элемента. Это не значит, что это все проявится именно у вашей модели фена, но это те вещи, на которые следует обратить внимание при покупке и эксплуатации фена.

В этой статье мы постарались максимально осветить все проблемы, возникающие в процессе эксплуатации фена. Покупать этот инструмент или нет – как всегда, решать только вам.

Ремонт строительного фена своими руками.

Всем нам знаком такой вспомогательный инструмент в строительстве как строительный электрический фен, которым мы привыкли пользоваться для снятия лакокрасочных покрытий.

Основополагающий принцип работы строительного фена мало чем отличим от обыкновенного фена, которым мы пользуемся для сушки волос.

Соответственно и электрическая схема строительного фена имеет сходство с электрической схемой обыкновенного фена.

В изложенной теме будет дано пояснение:

  • электрической схеме строительного фена;
  • принципу работы строительного фена;
  • возможным причинам неисправности;
  • устранению данных неисправностей.

Электрическая схема строительного фена

Рассмотрим электрическую схему рис.1 строительного фена:

Одна диагональ диодного моста — подключается к внешнему источнику переменного напряжения 220В.

Другая диагональ диодного моста соединена с электродвигателем.

Электрическая схема состоит из следующих элементов:

  • тумблера, осуществляющим режим температуры управления — К1;
  • тумблера, осуществляющим скорость вращения ротора электродвигателя управление скоростью обдува — К2;
  • тумблера отключения ТЭНов — К3;
  • электродвигателя вентилятора — М;
  • конденсатора — С;
  • ТЭНов — RТЭН;
  • диодов — VD1, VD2.

Через диодную мостовую схему одной диагонали моста выпрямленный ток двух потенциалов +,- поступает на электродвигатель. При переходе от анода к катоду — ток протекает при положительном полупериоде синусоидального напряжения.

Два конденсатора соединенных в электрической схеме параллельно, — служат дополнительными сглаживающими фильтрами.

Скорость обдува происходит за счет изменчивости сопротивления в электрической цепи, то есть, при переключении тумблера скорости на наибольшее значение сопротивления, — скорость вращения ротора электродвигателя уменьшается в связи с падением напряжения.

Количество ТЭНов нагревателей в данной схеме — четыре. Температурный режим строительного фена осуществляется тумблером температурного управления.

ТЕНы в электрической цепи имеют разное сопротивление, — соответственно, температура нагрева при переключении из одного участка электрической цепи на другой — нагрев ТЭНов будет соответствовать своему значению сопротивления.

Общий внешний вид строительного фена с его названиями отдельных деталей, — показан на рис.2

Следующая электрическая схема строительного фена рис.3, — сопоставима с электрической схемой рис.1

В данной электрической схеме отсутствует диодный мост. Управление скоростью обдува и управление температурным режимом, — происходит при переключении из одного участка электрической цепи на другой, а именно:

  • при переключении на участок электрической цепи — состоящей из диода;
  • при переключении на участок электрической цепи — не имеющей диод.

При протекании тока в переходе анод — катод диода VD1, имеющим свое сопротивление, — ТЭН2 будет нагреваться соответственно двум значениям сопротивлений:

  • сопротивления при переходе анод — катод диода VD1;
  • сопротивлении ТЭНа ТЭН2.
Читайте также:
Раскладная кровать-трансформвер в виде тумбы: 5 видов с матрасом, особенности выбора основания

При протекании тока в переходе анод — катод диода VD2, напряжение подаваемое на электродвигатель и ТЭН1, — будет принимать наименьшее значение.

Соответственно, скорость вращения ротора электродвигателя и температура нагрева ТЭНа для данного участка электрической цепи, — будет соответствовать прямому переходу тока диода VD2. Нагрев ТЭНа ТЭН1 для данного участка, так же зависит от своего внутреннего сопротивления, то есть учитывается сопротивление ТЭНа.

Неисправности строительного фена

Основными причинами неисправности строительного фена здесь можно назвать неисправность элементов электроники:

  1. диодов;
  2. конденсаторов.

Чаще всего такая неисправность происходит при резком скачке внешнего источника переменного напряжения. Так например, причина неисправности конденсатора вызвана тем, что обкладки конденсатора замыкаются при скачке напряжения между собой — накоротко.

Конечно же не исключается такая возможность неисправности как разрыв в обмотке статора электродвигателя перегорание обмотки.

К незначительным неисправностям можно отнести такие причины как:

  • окисление контактов тумблера температурного управления;
  • окисление контактов тумблера управления скоростью обдува;
  • окисление контактов тумблера отключения ТЭНов;
  • разрыв провода в сетевом кабеле;
  • неисправность штепсельной вилки отсутствие контакта.

Диагностика на выявление причины неисправности проводится прибором » Мультиметр».

При замене конденсатора — учитывается его емкость и номинальное значение напряжения.

При замене диода — учитывается сопротивление двух значений, в направлениях:

  • от анода к катоду;
  • от катода к аноду.

Как нам известно, значение сопротивления от анода к катоду будет значительно меньше чем от катода к аноду.

С электродвигателем, при его неисправности, дела обстоят по-сложнее. При подобной неисправности, проще заменить электродвигатель чем допустим выполнить перемотку обмоток статора. Но и такая работа выполнима, — кто непосредственно занимается подобным ремонтом. В этом случае учитывается:

  1. количество витков в обмотке статора;
  2. сечение медного провода.

Не исключается и такая неисправность как перегорание ТЭНа. Замена ТЭНа проводится с учетом своего значения сопротивления.

Диагностика и ремонт-строительного фена

Рассмотрим устройство электродвигателей и как именно нужно проводить диагностику электрических машин, как их принято считать в разделе по электротехнике.

Для наглядного примера, представлены фотоснимки нескольких типов таких электрических машин, — относящихся к коллекторным электродвигателям. Устройство и принцип работы допустим двух коллекторных электродвигателей:

  • пылесоса;
  • строительного фена,

— ничем не отличается. Различие в электродвигателях состоит лишь в скорости вращения ротора и в мощности электродвигателя. Поэтому, мы как бы не будем заострять свое внимание в том плане, что приведены разъяснения, не относящиеся к электродвигателю строительного фена.

Электродвигатель строительного фена

Электродвигатель строительного фена — асинхронный, коллекторный, однофазного переменного тока.

Устройство ротора не требует каких либо разъяснений, так как все представлено на фотоснимке рис.4 и схематическом изображении ротора электродвигателя.

асинхронный коллекторный электродвигатель однофазного переменного тока

Электрическая схема коллекторного электродвигателя рис.5 выглядит следующим образом:

В схеме мы можем заметить, что коллекторный электродвигатель может работать как от переменного так и от постоянного тока, — таковы законы физики.

Две обмотки статора электродвигателя соединены последовательно. Две графитовые щетки в контакте — в электрическом соединении с коллектором ротора электродвигателя.

Электрическая цепь замыкается на обмотках ротора, — соответственно, обмотки ротора в электрической схеме соединены параллельно через скользящий контакт щетка — коллектор.

диагностика обмоток статора электродвигателя

На фотоснимке показан один из способов диагностирования обмоток статора электродвигателя. Таким способом проверяется целостность либо пробой изоляции обмоток статора. То есть один щуп прибора соединяется с любым из выведенных концов обмоток статора, другой щуп прибора соединяется с сердечником статора.

В том случае, если будет нарушена изоляция обмотки статора и проводка обмотки будет замыкать на сердечник, — прибор укажет на режим короткого замыкания нулевое значение сопротивления. Из этого следует, что обмотка статора неисправна.

Прибор на фотоснимке указывает на единичку при диагностировании, — это еще не будет означать, что данная обмотка статора является пригодной к эксплуатации.

Необходимо так же измерить сопротивление непосредственно самих обмоток. Диагностика проводится таким же подобным способом, — щупы прибора при этом соединяются с выведенными концами проводов обмоток статора. При целостности обмоток, дисплей прибора укажет на значение сопротивления, которым обладает та или другая обмотка. При разрыве той или иной обмотки статора, — прибор покажет «единицу». Если провода обмотки статора между собой будут замкнуты накоротко в результате перегрева электродвигателя или по другим иным причинам, — прибор будет указывать на наименьшее нулевое значение сопротивления или же «режим короткого замыкания».

Как проверить прибором обмотки ротора на сопротивление? — Для этого нужно два щупа прибора соединить с двумя противоположными сторонами коллектора, то есть нужно выполнить такое же соединение, которые имеют графитовые щетки в электрическом соединении с коллектором. Результаты диагностики сводятся к таким же показаниям, что и при диагностировании обмоток статора.

износ пластин коллектора

Что из себя вообще представляет коллектор? — Коллектор, это полый цилиндр состоящий из мелких медных пластин специального сплава, изолированных как друг от друга так и от вала ротора.

Читайте также:
Объемное панно: на стену3д, декор своими руками из штукатурки, новогоднее рельефное панно, мастер-класс из бумаги

В том случае, если повреждение пластин коллектора незначительное, — пластины коллектора зачищаются мелкозернистой наждачной бумагой. Опять же, данный объем работы выполним непосредственно только специалистами, занимающими ремонтом электродвигателей.

Электрическая схема рис.7 состоит из батареи и лампочки, данная схема сопоставима со схемой карманного фонарика. Один конец провода с отрицательным потенциалом соединяется с сердечником статора, другой конец провода с положительным потенциалом соединяется с одним из выведенных концов обмоток статора. Если провода соединить наоборот, то есть «плюс» к сердечнику статора, «минус» к выведенному концу обмотки статора, — от этого ничего не меняется.

При наличии пробоя изоляции, когда обмотка статора замкнута с сердечником, — лампочка в данной электрической схеме будет гореть. Соответственно, если лампочка гореть не будет — значит обмотка статора не замкнута с сердечником статора.

Такой способ диагностирования рис.7 — не полный. Точная диагностика проводится только прибором Омметр либо прибором Мультиметр с установленным диапазоном измерения сопротивления, для последующего замера сопротивления обмоток статора.

Не работает вентилятор в строительном фене. Почему фен перегревается и отключается? Что делать с этим

Конструкция фена Интерскол

Фен имеет три ступени регулировки мощности и скорости потока воздуха, а также плавную регулировку температуры. Фены Интерскол делаются в Китае, качество соответствует. Отзывов и описаний много в интернете, в том числе на сайте производителя. Мой отзыв – ещё один.

Фен Интерскол ФЭ-2000. Cерийный номер

Фен собирается в двух модификациях, которые отличаются в основном схемами электронных плат.

Первый вариант – на плате DB3011, плата переключателя – DV3011-2. Эта плата собрана на микросхеме (сдвоенный операционный усилитель LM358) и симисторе BTA16 или аналогах – BT139, и т.п.

Вторая модификация – плата DB230V, схема собрана на оптопаре P521 и симисторе. Плата переключателя названа DG-KG3.

Неисправности строительного фена

Основными причинами неисправности строительного фена здесь можно назвать неисправность элементов электроники:

  1. диодов;
  2. конденсаторов.

Чаще всего такая неисправность происходит при резком скачке внешнего источника переменного напряжения. Так например, причина неисправности конденсатора вызвана тем, что обкладки конденсатора замыкаются при скачке напряжения между собой — накоротко.

Конечно же не исключается такая возможность неисправности как разрыв в обмотке статора электродвигателя перегорание обмотки.

К незначительным неисправностям можно отнести такие причины как:

  • окисление контактов тумблера температурного управления;
  • окисление контактов тумблера управления скоростью обдува;
  • окисление контактов тумблера отключения ТЭНов;
  • разрыв провода в сетевом кабеле;
  • неисправность штепсельной вилки отсутствие контакта.

Диагностика на выявление причины неисправности проводится прибором » Мультиметр».

При замене конденсатора — учитывается его емкость и номинальное значение напряжения.

При замене диода — учитывается сопротивление двух значений, в направлениях:

  • от анода к катоду;
  • от катода к аноду.

Как нам известно, значение сопротивления от анода к катоду будет значительно меньше чем от катода к аноду.

С электродвигателем, при его неисправности, дела обстоят по-сложнее. При подобной неисправности, проще заменить электродвигатель чем допустим выполнить перемотку обмоток статора. Но и такая работа выполнима, — кто непосредственно занимается подобным ремонтом. В этом случае учитывается:

  1. количество витков в обмотке статора;
  2. сечение медного провода.

Не исключается и такая неисправность как перегорание ТЭНа. Замена ТЭНа проводится с учетом своего значения сопротивления.

Диагностика и ремонт-строительного фена

Рассмотрим устройство электродвигателей и как именно нужно проводить диагностику электрических машин, как их принято считать в разделе по электротехнике.

Для наглядного примера, представлены фотоснимки нескольких типов таких электрических машин, — относящихся к коллекторным электродвигателям. Устройство и принцип работы допустим двух коллекторных электродвигателей:

  • пылесоса;
  • строительного фена,

— ничем не отличается. Различие в электродвигателях состоит лишь в скорости вращения ротора и в мощности электродвигателя. Поэтому, мы как бы не будем заострять свое внимание в том плане, что приведены разъяснения, не относящиеся к электродвигателю строительного фена.

Схема и электроника фена

Сначала рассмотрим схему фена на плате DB3011. Ниже приведена фотография в разобранном виде:

Плата DB3011, DB3013

Схема электрическая соединений:

Фен Интерскол ФЭ-2000. Плата DB3011. Схема соединений

  • С1 – 0,22 мкФ х 275V (для подавления помех)
  • R1 – 27…28 Ом – низкоомный (мощный) нагревательный элемент
  • R2 – 180…195 Ом – высокоомный нагревательный элемент (спираль)
  • F – термопредохранитель (Lebao RVD-135 250V 10A TF=135°C)
  • M – двигатель, 18 VDC
  • Переключатель – на 4 положения, Defond DSE-2410

Схема самой платы DB3011:

Фен Интерскол ФЭ-2000. Плата DB3011. Схема соединений и схема платы (вариант 1)

Схема платы DB3011. Вариант 2

Параметры деталей электронной платы DV3011

TR1 -BTA 16 600CMAR729 R1=100Ком
D1 -6C2RSHL LM358P – микросхема R2=97Ком
С1=3.3mF (50V) R3=100Ком
С3=0,47mF (50V) R4=21,7Ком
С18=470mF (25V) R5=
С=.22mF KX2 (250V) MEX CPF 40/85/21/C R6=50Ком
D1-9 – 1N4007 ZX R7=
D10 – 6A10 R8=430Ком
Z2 -1N744A (стабилитрон) R9=
S1 – переключатель “Defond” DSE 2410 10A 250V

Схема электрическая фена ИНТЕРСКОЛ на плате DB230V

Фен Интерскол ФЭ-2000. Плата DB230V на симисторе и оптроне. Фото в разборе.

Плата DB230V. Фото поближе.

Фен Интерскол ФЭ-2000. Плата DB230V. Схема соединений

Плата DB230V_схема подключения. Вариант 2.

Плата DB230V_схема электрическая принципиальная. В схеме недорисовка – между точкой Gx и точкой соединения спиралей R1 и R2 – включен термопредохранитель (см таблицу с перечнем деталей выше). Кроме того, выход термопары подключен ошибочно, см.комментарии.

04.03.13: Выкладываю во всеобщее пользование схему электроники платы DB 230 V, которую мне прислал читатель, пожелавший остаться неизвестным:

Схема фена Интерскол ФЭ-2000 на плате DB-230V

Соединение старой и новой платы фена, взаимозаменяемость выводов:

  • N3 – S2
  • N1 – S3
  • N2 – S1
  • N – GX

Электрическая схема строительного фена

Рассмотрим электрическую схему рис.1 строительного фена:

Одна диагональ диодного моста — подключается к внешнему источнику переменного напряжения 220В.

Другая диагональ диодного моста соединена с электродвигателем.

Электрическая схема состоит из следующих элементов:

  • тумблера, осуществляющим режим температуры управления — К1;
  • тумблера, осуществляющим скорость вращения ротора электродвигателя управление скоростью обдува — К2;
  • тумблера отключения ТЭНов — К3;
  • электродвигателя вентилятора — М;
  • конденсатора — С;
  • ТЭНов — RТЭН;
  • диодов — VD1, VD2.

Через диодную мостовую схему одной диагонали моста выпрямленный ток двух потенциалов +,- поступает на электродвигатель. При переходе от анода к катоду — ток протекает при положительном полупериоде синусоидального напряжения.

Два конденсатора соединенных в электрической схеме параллельно, — служат дополнительными сглаживающими фильтрами.

Скорость обдува происходит за счет изменчивости сопротивления в электрической цепи, то есть, при переключении тумблера скорости на наибольшее значение сопротивления, — скорость вращения ротора электродвигателя уменьшается в связи с падением напряжения.

Количество ТЭНов нагревателей в данной схеме — четыре. Температурный режим строительного фена осуществляется тумблером температурного управления.

ТЕНы в электрической цепи имеют разное сопротивление, — соответственно, температура нагрева при переключении из одного участка электрической цепи на другой — нагрев ТЭНов будет соответствовать своему значению сопротивления.

Общий внешний вид строительного фена с его названиями отдельных деталей, — показан на рис.2

Следующая электрическая схема строительного фена рис.3, — сопоставима с электрической схемой рис.1

В данной электрической схеме отсутствует диодный мост. Управление скоростью обдува и управление температурным режимом, — происходит при переключении из одного участка электрической цепи на другой, а именно:

  • при переключении на участок электрической цепи — состоящей из диода;
  • при переключении на участок электрической цепи — не имеющей диод.

При протекании тока в переходе анод — катод диода VD1, имеющим свое сопротивление, — ТЭН2 будет нагреваться соответственно двум значениям сопротивлений:

  • сопротивления при переходе анод — катод диода VD1;
  • сопротивлении ТЭНа ТЭН2.

При протекании тока в переходе анод — катод диода VD2, напряжение подаваемое на электродвигатель и ТЭН1, — будет принимать наименьшее значение.

Соответственно, скорость вращения ротора электродвигателя и температура нагрева ТЭНа для данного участка электрической цепи, — будет соответствовать прямому переходу тока диода VD2. Нагрев ТЭНа ТЭН1 для данного участка, так же зависит от своего внутреннего сопротивления, то есть учитывается сопротивление ТЭНа.

Ремонт фена Интерскол своими руками

Фен Интерскол ФЭ-2000 довольно ненадежен, особенно если эксплуатировать его неправильно.

Ремонт обычно происходит по таким неисправностям:

  • Замена симистора,
  • Замена или чистка переменного резистора (потенциометра),
  • Замена или ремонт нагревательных спиралей R1 или R2,
  • Замена двигателя.

Чтобы фен проработал дольше, рекомендуется внимательно изучить инструкцию по эксплуатации, особенно режим работы.

Рекомендуемое максимально время работы – 5 минут. По завершении работы регулятор температуры убрать на минимум, оставить на холодном продуве не менее чем на 1 минуту, и только затем выключить фен.

Диагностика поломки


Как правило, строительный фен выходит из строя по причине не соблюдения требований эксплуатации. При перекручивании шнура может произойти его залом, а слишком долгая работа может привести к перегреву оборудования.
Специалисты называют следующие поломки оборудования, которые случаются чаще всего:

  • поломка шнура питания в месте перегиба;
  • дефект кнопки пуска и других элементов управления;
  • перегорание внутренних проводов;
  • нарушение целостности нагревательного элемента;
  • перегорание или перегрев двигателя и вентилятора.

Самыми сложными поломками считаются как раз неисправность двигателя и вентилятора – их, скорее всего, придется заменить. При этом найти необходимые детали бывает довольно сложно.

Как обнаружить неисправность?

Строительный фен не включается или работает не в полную мощность? Значит, в первую очередь, необходимо осмотреть оборудование. Проверяем целостность провода питания, вилки, функционирование кнопок включения и регулировки температуры.

Далее испытываем оборудование при работе в различных режимах.

  • Если при включении устройство выдает холодный воздух из сопла, неисправность касается спирали.
  • Если же воздух совсем не подается, возможно, произошла поломка вентилятора или двигателя.

Чтобы уточнить причину поломки может появиться необходимость выполнить разбор электроприбора. Тогда вам понадобится фотоаппарат: кадры поэтапного разбора конструкции помогут потом правильно собрать устройство.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: