Правильный расчет теплопотерь — калькулятор и нормативные методики

Правильный расчет теплопотерь — калькулятор и нормативные методики

Общеизвестный факт — для обеспечения тепла и комфорта мало установить современные агрегаты и оборудовать систему отопления новейшей техникой. Необходимо еще и правильно рассчитать мощностные и другие показатели инженерной сети.

Расчет отопления — сложная процедура, проходящая в несколько этапов. Важнейшим среди них остается расчет теплопотерь, а калькуляторы, онлайн-сервисы и программное обеспечение способны существенно облегчить эту работу.

  1. Нормы и требования
  2. Куда уходит тепло?
  3. Точные расчеты
  4. Заключение

Нормы и требования

Важно! Нормы и требования по теплосбережению дома регламентируются СНиП II-3-79. В соответствии с этим нормативным документам определяются основные параметры, влияющие на сопротивление теплопередаче.

Этот параметр рассчитывается исходя из двух критериев:

  • Тепловой режим, необходимый для комфорта в доме.
  • Обеспечение условий эффективного энергосбережения.

Как показывает практика, большинство домов строится с нарушением этих норм, поэтому необходимо определить реальные тепловые потери. С этой целью можно использовать как табличные методики, так и онлайн-калькуляторы.

Куда уходит тепло?

Тепло из дома может уходить разными «путями». Основные из них:

  • Ограждающие конструкции — стены, крыша, пол, подвальное помещение и т. п.
  • Окна.
  • Двери.
  • Системы вентиляции.

Потери тепла

Суммарные теплопотери при этом могут быть очень велики. Существует несколько причин потерь тепла в доме:

  1. Разница температур внутри дома и на улице.
  2. Недостаточная теплозащита ограждающих конструкций — малое сопротивление теплопередаче.

Сопротивление строительных конструкций теплопередаче — важнейший параметр, который необходимо знать, выполняя расчеты. Именно он оказывает максимальное влияние на потери тепла, а значит, и на необходимую мощность отопительной системы. Этот параметр показывает количество тепла, пропускаемое 1 кв. метром рассчитываемой конструкции при определенном перепаде температур. Определяется он по формуле: R = ΔT/q.

Энергосберегающие стеклопакеты

Теряемое 1 кв. метром конструкции количество тепла обозначается буквой q и измеряется в Вт/м. ΔT — разница между внутридомовой и уличной температурой. Используя эту формулу для расчетов «многослойной» конструкции, например, деревянных стен, обложенных кирпичом, необходимо учитывать суммарное сопротивление — древесины, кирпича и воздуха.

При выполнении расчетов теплопотерь необходимо использовать данные по самым неблагоприятным периодам года, когда наблюдаются сильные морозы или ветра. Практически во всех справочниках, применяемых специалистами для оценки уровня теплопотерь здания, термосопротивление стройматериалов обязательно указывается с учетом этого требования и климатических условий разных регионов. Температура внутри помещения, как правило, берется усредненная, составляющая 20 °С. В этом случае для средней полосы России в условиях морозной зимы ΔT составит 50 °С.

Точные расчеты

Пользуясь только этой формулой, мы получим усредненные показатели потерь тепла через стены, окна, двери и т. д. Суммировав же эти величины, мы найдем общие цифры. На самом деле они все равно будут не очень точными. На уровень потерь тепла существенное влияние оказывают и другие параметры, в частности, расположение помещения внутри здания.

Например, для угловых помещений уровень теплопотерь будет выше, чем для комнат, расположенных внутри здания. Также увеличатся потери, если комната примыкает к неотапливаемому помещению. Для получения объективной картины необходимо учесть все факторы.

Онлайн-сервисы и калькуляторы расчета теплопотерь удобны как раз тем, что позволяют учесть данные, не включенные в стандартные формулы. Не являясь специалистом, обычный домовладелец может просто не знать, что они способны оказать влияние на микроклимат в доме.

Заключение

Важнейший вывод — необходимость проведения расчетов, в которых учитывается множество параметров, критериев и факторов. Правильно выполненный расчет теплопотерь легко станет тем «китом», на котором базируется энергоэффективное здание. Эти данные являются основными в определении мощности котла, количества секций радиаторов и других параметров отопительной сети.

Неспециалист может сделать такие расчеты, пользуясь формулами, но результаты далеко не всегда получаются точными и объективными. Лучший вариант — использование онлайн-калькуляторов для расчета. В это программное обеспечение изначально заложены все параметры, способные оказать влияние на сбережение тепла в доме.

Правильный расчет теплопотерь дома

Делаем быстрый расчет мощности радиаторов отопления — калькулятор онлайн

Как провести расчет водяного теплого пола — калькулятор и правила

Как грамотно выполнить расчет тепловых нагрузок на отопление

Самостоятельный расчет системы отопления частного дома

Online программа расчета теплопотерь дома

Выберите город tнар = – o C

Введите температуру воздуха в помещении; tвн = + o C

Теплопотери через стены развернуть свернуть

Вид фасада &#945 =

Площадь наружных стен, кв.м.

Материал первого слоя &#955 =

Толщина первого слоя, м.

Материал второго слоя &#955 =

Толщина второго слоя, м.

Материал третьего слоя &#955 =

Толщина третьего слоя, м.

Теплопотери через стены, Вт

Теплопотери через окна развернуть свернуть

Введите площадь окон, кв.м.

Теплопотери через окна

Теплопотери через потолки развернуть свернуть

Выберите вид потолка

Введите площадь потолка, кв.м.

Материал первого слоя &#955 =

Толщина первого слоя, м.

Материал второго слоя &#955 =

Толщина второго слоя, м.

Материал третьего слоя &#955 =

Читайте также:
Прихожая в африканском стиле

Толщина третьего слоя, м.

Теплопотери через потолок

Теплопотери через пол развернуть свернуть

Выберите вид пола

Введите площадь пола, кв.м.

Материал первого слоя &#955 =

Толщина первого слоя, м.

Материал второго слоя &#955 =

Толщина второго слоя, м.

Материал третьего слоя &#955 =

Толщина третьего слоя, м.

Теплопотери через пол

Материал первого слоя &#955 =

Толщина первого слоя, м.

Материал второго слоя &#955 =

Толщина второго слоя, м.

Материал третьего слоя &#955 =

Толщина третьего слоя, м.

Площадь зоны 1, кв.м. что такое зоны?

Площадь зоны 2, кв.м.

Площадь зоны 3, кв.м.

Площадь зоны 4, кв.м.

Теплопотери через пол

Теплопотери на инфильтрацию развернуть свернуть

Введите Жилую площадь, м.

Теплопотери на инфильтрацию

О программе развернуть свернуть

Очень часто на практике принимают теплопотери дома из расчета средних около 100 Вт/кв.м. Для тех, кто считает деньги и планирует обустроить дом экономной системой отопления без лишних капиталовложений и с низким расходом топлива, такие расчеты не подойдут. Достаточно будет сказать, что теплопотери хорошо утепленного дома и неутепленного могут отличаться в 2 раза. Точные расчеты по СНиП требуют большого времени и специальных знаний, но эффект от точности не ощутится должным образом на эффективности системы отопления.

Данная программа разрабатывалась с целью предложить лучший результат цена/качество, т.е. (затраченное время)/(достаточная точность).

03.12.2017 – скорректирована формула расчета теплопотерь на инфильтрацию. Теперь расхождений с профессиональными расчетами проектировщиков не обнаружено (по теплопотерям на инфильтрацию).

10.01.2015 – добавлена возможность менять температуру воздуха внутри помещений.

FAQ развернуть свернуть

Как посчитать теплопотери в соседние неотапливаемые помещения?

По нормам теплопотери в соседние помещения нужно учитываеть, если разница температур между ними превышает 3 o C. Это может быть, например, гараж. Как с помощью онлайн-калькулятора посчитать эти теплопотери?

Пример. В комнате у нас должно быть +20, а в гараже мы планируем +5. Решение. В поле tнар ставим температуру холодной комнаты, в нашем случае гаража, со знаком “-“. -(-5) = +5 . Вид фасада выбираем “по умолчанию”. Затем считаем, как обычно.

Внимание! После расчета потерь тепла из помещения в помещение не забываем выставлять температуры обратно.

Теплопотери дома, расчет теплопотерь.

На сегодняшний день теплосбережение является важным параметром, который учитывается при сооружении жилого или офисного помещения. В соответствии со СНиП 23-02-2003 «Тепловая защита зданий», сопротивление теплоотдаче рассчитывается по одному из двух альтернативных подходов:

  • Предписывающему;
  • Потребительскому.

Для расчета систем отопления дома, вы можете воспользоваться калькулятором расчета отопления, теплопотерь дома.

Предписывающий подход – это нормы, предъявляемые к отдельным элементам теплозащиты здания: наружным стенам, полам над не отапливаемым пространствами, покрытиям и чердачным перекрытиям, окнам, входным дверям и т.д.

Потребительский подход (сопротивление теплопередаче может быть снижено по отношению к предписывающему уровню при условии, что проектный удельный расход тепловой энергии на отопление помещения ниже нормативного).

  • Перепад между температурами воздуха внутри помещения и снаружи не должен превышать определенных допустимых значений. Максимальные допустимые значения перепада температур для наружной стены 4°С. для покрытия и чердачного перекрытия 3°С и для перекрытия над подвалами и подпольями 2°С.
  • Температура на внутренней поверхности ограждения должна быть выше температуры точки росы.

К примеру: для Москвы и московской области необходимое теплотехническое сопротивление стены по потребительскому подходу составляет 1.97 °С· м 2 /Вт, а по предписывающему подходу:

  • для дома постоянного проживания 3.13 °С· м 2 / Вт.
  • для административных и прочих общественных зданий, в том числе сооружений сезонного проживания 2.55 °С· м 2 / Вт.

По этой причине, выбирая котел либо другие нагревательные приборы исключительно по указанным в их технической документации параметрам. Вы должны спросить у себя, построен ли ваш дом со строгим учетом требований СНиП 23-02-2003.

Следовательно, для правильного выбора мощности котла отопления либо нагревательных приборов, необходимо рассчитать реальные теплопотери вашего дома. Как правило, жилой дом теряет тепло через стены, крышу, окна, землю, так же существенные потери тепла могут приходиться на вентиляцию.

Теплопотери в основном зависят от:

  • разницы температур в доме и на улице (чем выше разница, тем выше потери).
  • теплозащитных характеристик стен, окон, перекрытий, покрытий.

Стены, окна, перекрытия, имеют определенное сопротивление утечкам тепла, теплозащитные свойства материалов оценивают величиной, которая называется сопротивлением теплопередачи.

Сопротивление теплопередачи покажет, какое количество тепла просочится через квадратный метр конструкции при заданном перепаде температур. Можно сформулировать этот вопрос по другому: какой перепад температур будет возникать при прохождении определенного количества тепла через квадратный метр ограждений.

R = ΔT/q.

  • q – это количество тепла, которое уходит через квадратный метр поверхности стены или окна. Это количество тепла измеряют в ваттах на квадратный метр (Вт/ м 2 );
  • ΔT – это разница между температурой на улице и в комнате (°С);
  • R – это сопротивление теплопередачи (°С/ Вт/ м 2 или °С· м 2 / Вт).
Читайте также:
Правильное удаление силиконового герметика с поверхности

В случаях, когда речь идет о многослойной конструкции, то сопротивление слоев просто суммируется. К примеру, сопротивление стены из дерева, которая обложена кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:

R(сумм.)= R(дерев.) + R(воз.) + R(кирп.)

Распределение температуры и пограничные слои воздуха при передаче тепла через стену.

Расчет теплопотерь выполняется для самого холодного периода года периода, коим является самая морозная и ветреная неделя в году. В строительной литературе, зачастую, указывают тепловое сопротивление материалов исходя из данного условия и климатического района (либо наружной температуры), где находится ваш дом.

Таблица сопротивления теплопередачи различных материалов

Материал и толщина стены

Сопротивление теплопередаче Rm.

Кирпичная стена
толщ. в 3 кирп. (79 сантиметров)
толщ. в 2.5 кирп. (67 сантиметров)
толщ. в 2 кирп. (54 сантиметров)
толщ. в 1 кирп. (25 сантиметров)

Сруб из бревна Ø 25
Ø 20

Толщ. 20 сантиметров
Толщ. 10 сантиметров

Каркасная стена (доска +
минвата + доска) 20 сантиметров

Стена из пенобетона 20 сантиметров
30 см

Штукатурка по кирпичу, бетону.
пенобетону (2-3 см)

Потолочное (чердачное) перекрытие

Двойные деревянные двери

Таблица тепловых потерь окон различных конструкций при ΔT = 50 °С (Тнар. = –30 °С. Твнутр. = 20 °С.)

Тип окна

RT

q. Вт/м2

Q. Вт

Обычное окно с двойными рамами

Стеклопакет (толщина стекла 4 мм)

4-6-4-6-4
4-Ar6-4-Ar6-4
4-6-4-6-4К
4-Ar6-4-Ar6-4К
4-8-4-8-4
4-Ar8-4-Ar8-4
4-8-4-8-4К
4-Ar8-4-Ar8-4К
4-10-4-10-4
4-Ar10-4-Ar10-4
4-10-4-10-4К
4-Ar10-4-Ar10-4К
4-12-4-12-4
4-Ar12-4-Ar12-4
4-12-4-12-4К
4-Ar12-4-Ar12-4К
4-16-4-16-4
4-Ar16-4-Ar16-4
4-16-4-16-4К
4-Ar16-4-Ar16-4К

Как видно из вышеуказанной таблицы, современные стеклопакеты дают возможность сократить теплопотери окна почти в 2 раза. К примеру, для 10 окон размером 1.0 м х 1.6 м экономия может достигать в месяц до 720 киловатт-часов.

Для правильного выбора материалов и толщины стен применим эти сведения к конкретному примеру.

В расчете тепловых потерь на один м 2 участвуют две величины:

  • перепад температур ΔT.
  • сопротивления теплопередаче R.

Допустим температура в помещении будет составлять 20 °С. а наружная температура будет равной –30 °С. В таком случае перепад температур ΔT будет равен 50 °С. Стены изготовлены из бруса толщиной 20 сантиметров, тогда R= 0.806 °С· м 2 / Вт.

Тепловые потери будут составлять 50 / 0.806 = 62 (Вт/ м 2 ).

Для упрощения расчетов теплопотерь в строительных справочниках указывают теплопотери различного вида стен, перекрытий и т.д. для некоторых значений зимней температуры воздуха. Как правило, приводятся различные цифры для угловых помещений (там влияет завихрение воздуха, отекающего дом) и неугловых, а также учитывается разница в температур для помещений первого и верхнего этажа.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру стен) в зависимости от средней температуры самой холодной недели в году.

Характеристика
ограждения

Наружная
температура.
°С

Теплопотери. Вт

1 этаж

2 этаж

Угловая
комната

Неугл.
комната

Угловая
комната

Неугл.
комната

Стена в 2.5 кирпича (67 см)
с внутр. штукатуркой

Стена в 2 кирпича (54 см)
с внутр. штукатуркой

Рубленая стена (25 см)
с внутр. обшивкой

Рубленая стена (20 см)
с внутр. обшивкой

Стена из бруса (18 см)
с внутр. обшивкой

Стена из бруса (10 см)
с внутр. обшивкой

Каркасная стена (20 см)
с керамзитовымзаполнением

Стена из пенобетона (20 см)
с внутр. штукатуркой

Примечание. В случае когда за стеной находится наружное неотапливаемое помещение (сени, остекленная веранда и т.п.), то потери тепла через нее будут составлять 70% от расчетных, а если за этим неотапливаемым помещением находится еще одно наружное помещение то потери тепла будут составлять 40% от расчетного значения.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру) в зависимости от средней температуры самой холодной недели в году.

Характеристика ограждения

Наружная
температура. °С

Теплопотери.
кВт

Окно с двойным остеклением

Сплошные деревянные двери (двойные)

Деревянные полы над подвалом

Далее давайте разберем пример расчета тепловых потерь 2 различных комнат одной площади при помощи таблиц.

Пример 1.

Угловая комната (1 этаж)

  • 1 этаж.
  • площадь комнаты – 16 м 2 (5х3.2).
  • высота потолка – 2.75 м.
  • наружных стен – две.
  • материал и толщина наружных стен – брус толщиной 18 сантиметров обшит гипсокартонном и оклеен обоями.
  • окна – два (высота 1.6 м. ширина 1.0 м) с двойным остеклением.
  • полы – деревянные утепленные. снизу подвал.
  • выше чердачное перекрытие.
  • расчетная наружная температура –30 °С.
  • требуемая температура в комнате +20 °С.

Далее выполняем расчет площади теплоотдающих поверхностей.

  • Площадь наружных стен за вычетом окон: Sстен(5+3.2)х2.7-2х1.0х1.6 = 18.94 м 2 .
  • Площадь окон: Sокон = 2х1.0х1.6 = 3.2 м 2
  • Площадь пола: Sпола = 5х3.2 = 16 м 2
  • Площадь потолка: Sпотолка = 5х3.2 = 16 м 2

Площадь внутренних перегородок в расчете не участвует, так как по обе стороны перегородки температура одинакова, следовательно через перегородки тепло не уходит.

Читайте также:
Сиденье для унитаза с микролифтом: что это такое и зачем нужно?

Теперь Выполним расчет теплопотери каждой из поверхностей:

  • Qстен = 18.94х89 = 1686 Вт.
  • Qокон = 3.2х135 = 432 Вт.
  • Qпола = 16х26 = 416 Вт.
  • Qпотолка = 16х35 = 560 Вт.

Суммарные теплопотери комнаты будут составлять: Qсуммарные = 3094 Вт.

Следует учитывать, что через стены улетучивается тепла куда больше чем через окна, полы и потолок.

Пример 2

Комната под крышей (мансарда)

  • этаж верхний.
  • площадь 16 м 2 (3.8х4.2).
  • высота потолка 2.4 м.
  • наружные стены; два ската крыши (шифер, сплошная обрешетка. 10 саниметров минваты, вагонка). фронтоны (брус толщиной 10 саниметров обшитый вагонкой) и боковые перегородки (каркасная стена с керамзитовым заполнением 10 саниметров).
  • окна – 4 (по два на каждом фронтоне), высотой 1.6 м и шириной 1.0 м с двойным остеклением.
  • расчетная наружная температура –30°С.
  • требуемая температура в комнате +20°С.

Далее рассчитываем площади теплоотдающих поверхностей.

  • Площадь торцевых наружных стен за вычетом окон: Sторц.стен = 2х(2.4х3.8-0.9х0.6-2х1.6х0.8) = 12 м 2
  • Площадь скатов крыши, ограничивающих комнату: Sскатов.стен = 2х1.0х4.2 = 8.4 м 2
  • Площадь боковых перегородок: Sбок.перегор = 2х1.5х4.2 = 12.6 м 2
  • Площадь окон: Sокон = 4х1.6х1.0 = 6.4 м 2
  • Площадь потолка: Sпотолка = 2.6х4.2 = 10.92 м 2

Далее рассчитаем тепловые потери этих поверхностей, при этом необходимо учесть, что через пол в данном случае тепло не будет уходить, так как внизу расположено теплое помещение. Теплопотери для стен рассчитываем как для угловых помещений, а для потолка и боковых перегородок вводим 70-процентный коэффициент, так как за ними располагаются неотапливаемые помещения.

  • Qторц.стен = 12х89 = 1068 Вт.
  • Qскатов.стен = 8.4х142 = 1193 Вт.
  • Qбок.перегор = 12.6х126х0.7 = 1111 Вт.
  • Qокон = 6.4х135 = 864 Вт.
  • Qпотолка = 10.92х35х0.7 = 268 Вт.

Суммарные теплопотери комнаты составят: Qсуммарные = 4504 Вт.

Как мы видим, теплая комната 1 этажа теряет (либо потребляет) значительно меньше тепла, чем мансардная комната с тонкими стенками и большой площадью остекления.

Чтобы данное помещение сделать пригодным для зимнего проживания, необходимо в первую очередь утеплять стены, боковые перегородки и окна.

Любая ограждающая поверхность может быть представлена в виде многослойной стены, каждый слой которой имеет собственное тепловое сопротивление и собственное сопротивление прохождению воздуха. Суммировав тепловое сопротивление всех слоев, мы получим тепловое сопротивление всей стены. Также ели просуммировать сопротивление прохождению воздуха всех слоев, можно понять, как дышит стена. Самая лучшая стена из бруса должна быть эквивалентна стене из бруса толщиной 15 – 20 антиметров. Приведенная далее таблица поможет в этом.

Таблица сопротивления теплопередаче и прохождению воздуха различных материалов ΔT=40 °С (Тнар.=–20 °С. Твнутр.=20 °С.)


Слой стены

Толщина
слоя
стены

Сопротивление
теплопередаче слоя стены

Сопротивл.
Воздухопро­
ницаемости
эквивалентно
брусовой стене
толщиной
(см)

Ro.

Эквивалент
кирпичной
кладке
толщиной
(см)

Кирпичная кладка из обычного
глиняного кирпича толщиной:

12 сантиметров
25 сантиметров
50 сантиметров
75 сантиметров

Кладка из керамзитобетонных блоков
толщиной 39 см с плотностью:

1000 кг / м 3
1400 кг / м 3
1800 кг / м 3

Пено- газобетон толщиной 30 см
плотностью:

300 кг / м 3
500 кг / м 3
800 кг / м 3

Брусовал стена толщиной (сосна)

10 сантиметров
15 сантиметров
20 сантиметров

Для полной картины теплопотерь всего помещения нужно учитывать

  1. Потери тепла через контакт фундамента с мерзлым грунтом, как правило принимают 15% от потерь тепла через стены первого этажа (с учетом сложности расчета).
  2. Потери тепла, которые связаны с вентиляцией. Данные потери рассчитываются с учетом строительных норм (СНиП). Для жилого дома требуется около одного воздухообмена в час, то есть за это время необходимо подать тот же объём свежего воздуха. Таким образом, потери которые связаны с вентиляцией будут составлять немного меньше чем сумма теплопотерь приходящиеся на ограждающие конструкции. Выходит, что теплопотери через стены и остекление составляет только 40%, а теплопотери на вентиляцию 50%. В европейских нормах вентиляции и утепления стен, соотношение теплопотерь составляют 30% и 60%.
  3. Если стена «дышит», как стена из бруса или бревна толщиной 15 – 20 сантиметров то происходит возврат тепла. Это позволяет снизить тепловые потери на 30%. поэтому полученную при расчете величину теплового сопротивления стены необходимо умножить на 1.3 (или соответственно уменьшить теплопотери).

Суммировав все теплопотери дома, Вы сможете понять какой мощности котел и отопительные приборы необходимы для комфортного обогрева дома в самые холодные и ветряные дни. Также, подобные расчеты покажут, где «слабое звено» и как его исключить с помощью дополнительной изоляции.

Выполнить расчет расхода тепла можно и по укрупненным показателям. Так, в 1-2 этажных не очень утепленных домах при наружной температуре –25 °С необходимо 213 Вт на 1 м 2 общей площади, а при –30 °С – 230 Вт. Для хорошо утепленных домов – этот показатель будет составлять: при –25 °С – 173 Вт на м 2 общей площади, а при –30 °С – 177 Вт.

Читайте также:
Обзор материалов для обшивки дома

Расчет теплопотерь: показатели и калькулятор теплопотерь здания

Расчет теплопотерь дома – основа отопительной системы. Он нужен, как минимум, чтобы правильно подобрать котёл. Также можно прикинуть, сколько денег будет уходить на отопление в планируемом доме, провести анализ финансовой эффективности утепления т.е. понять окупятся ли затраты на монтаж утепления экономией топлива за срок службы утеплителя. Очень часто подбирая мощность отопительной системы помещения, люди руководствуются средним значением в 100 Вт на 1 м 2 площади при стандартной высоте потолков до трех метров. Однако, не всегда эта мощность достаточна для полного восполнения теплопотерь. Здания различаются по составу строительных материалов, их объему, нахождению в разных климатических зонах и т.д. Для грамотного расчета теплоизоляции и подбора мощности отопительных систем необходимо знать о реальных теплопотерях дома. Как их рассчитать – расскажем в этой статье.

Основные параметры для расчета теплопотерь

Теплопотери любого помещения зависят от трех базовых параметров:

  • объем помещения – нас интересует объем воздуха, который необходимо отопить
  • разницу температуры внутри и снаружи помещения – чем больше разница тем быстрее происходит теплообмен и воздух теряет тепло
  • теплопроводность ограждающих конструкций – способность стен, окон удерживать тепло

Самый простой рассчет теплопотерь

Qт (кВт/час)=(100 Вт/м2 x S (м2) x K1 x K2 x K3 x K4 x K5 x K6 x K7)/1000

Данная формула расчета теплопотерь по укрупненным показателям, в основе которых лежат усредненные условия 100 Вт на 1кв метр. Где основными рассчетными показателями для расчета системы отопления являются следующие величины:

– тепловая мощность предполагаемого отопителя на отработанном масле, кВт/час.

100 Вт/м2 – удельная величина тепловых потерь (65-80 ватт/м2). В нее входят утечки тепловой энергии путем ее поглощения оконами, стенами, потолком полом; утечки через вентиляцию и негерметичности помещения и другие утечки.

S – площадь помещения;

K1 – коэффициент теплопотерь окон:

  • обычное остекление К1=1,27
  • двойной стеклопакет К1=1,0
  • тройной стеклопакет К1=0,85;

К2 – коэффициент теплопотерь стен:

  • плохая теплоизоляция К2=1,27
  • стена в 2 кирпича или утеплитель 150 мм толщиной К2=1,0
  • хорошая теплоизоляция К2=0,854

К3 коэффициент соотношения площадей окон и пола:

  • 10% К3=0,8
  • 20% К3=0,9
  • 30% К3=1,0
  • 40% К3=1,1
  • 50% К3=1,2;

K4 – коэффициент наружной температуры:

  • -10oC K4=0,7
  • -15oC K4=0,9
  • -20oC K4=1,1
  • -25oC K4=1,3
  • -35oC K4=1,5;

K5 – число стен, выходящих наружу:

  • одна – К5=1,1
  • две К5=1,2
  • три К5=1,3
  • четыре К5=1,4;

К6 – тип помещения, которое находится над расчитываемым:

  • холодный чердак К6=1,0
  • теплый чердак К6=0,9
  • отапливаемое помещение К6-0,8;

K7 – высота помещения:

  • 2,5 м К7=1,0
  • 3,0 м К7=1,05
  • 3,5 м К7=1,1
  • 4,0 м К7=1,15
  • 4,5 м К7=1,2.

Упрощенный рассчет теплопотерь дома

Qт = ( V x ∆t x k )/860; ( кВт )

V – объем помещения ( куб.м )
∆t – дельта температур (уличной и в помещении)
k – коэффициент рассеивания

  • k= 3,0-4,0 – без теплоизоляции. (Упрощенная деревянная конструкция или конструкция из гофрированного металлического листа).
  • k= 2,0-2,9 – небольшая теплоизоляция. (Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши).
  • k= 1,0-1,9 – средняя теплоизоляция. (Стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей).
  • k= 0,6-0,9 – высокая теплоизоляция. (Улучшенная конструкция, кирпичные стены с двойной теплоизоляцией, небольшое количество окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала).

В данной формуле очень условно учитываются коэффициент рассеивания и не совсем понятно каким коэффициентами пользоваться. В классике редкое современное, выполненное из современных материалов с учетом действующих стандартов, помещение обладает ограждающими конструкциями с коэффициентом рассеивания более одного. Для более детального понимания методики расчёта предлагаем следующие более точные методики.

Рекомендуемый рассчет теплопотерь дома

Сразу же акцентирую ваше внимание на то, что ограждающие конструкции в основном не являются однородными по структуре, а обычно состоят из нескольких слоёв. Пример: стена из ракушника = штукатурка + ракушник + наружная отделка. В эту конструкцию могут входить и замкнутые воздушные прослойки (пример: полости внутри кирпичей или блоков). Вышеперечисленные материалы имеют отличающиеся друг от друга теплотехнические характеристики. Основной такой характеристикой для слоя конструкции является его сопротивление теплопередачи R.

q – это количество тепла, которое теряет квадратный метр ограждающей поверхности (измеряется обычно в Вт/м.кв.)

ΔT – разница между температурой внутри рассчитываемого помещения и наружной температурой воздуха (температура наиболее холодной пятидневки °C для климатического района в котором находится рассчитываемое здание).

В основном внутренняя температура в помещениях принимается:

  • Жилые помещения 22С
  • Нежилые 18С
  • Зоны водных процедур 33С

Когда речь идёт о многослойной конструкции, то сопротивления слоёв конструкции складываются. Отдельно хочу акцентировать ваше внимание на расчётном коэффициенте теплопроводности материала слоя λ Вт/(м°С). Так как производители материалов чаще всего указывают его. Имея расчётный коэффициент теплопроводности материала слоя конструкции мы легко можем получить сопротивление теплопередачи слоя:

Читайте также:
Ограждение из дерева: видео-инструкция по монтажу своими руками, особенности балконных, садовых декоративных конструкций, для веранд, лестниц, цена, фото

δ – толщина слоя, м;

λ – расчётный коэффициент теплопроводности материала слоя конструкции, с учетом условий эксплуатации ограждающих конструкций, Вт / (м2 оС).

Итак для расчёта тепловых потерь через ограждающие конструкции нам нужны:

1. Сопротивление теплопередачи конструкций (если конструкция многослойная то Σ R слоёв) R
2. Разница между температурой в расчётном помещении и на улице (температура наиболее холодной пятидневки °C. ). ΔT
3. Площади ограждений F (Отдельно стены, окна, двери, потолок, пол)
4. Ориентация здания по отношению к сторонам света.

Формула для расчёта теплопотерь ограждением выглядит так:

Qогр=(ΔT / Rогр)* Fогр * n *(1+∑b)

Qогр – тепло потери через ограждающие конструкции, Вт
Rогр – сопротивление теплопередаче, м.кв.°C/Вт; (Если несколько слоёв то ∑ Rогр слоёв)
Fогр – площадь ограждающей конструкции, м;
n – коэффициент соприкосновения ограждающей конструкции с наружным воздухом.

Тип ограждающей конструкции

Коэффициент n

1. Наружные стены и покрытия (в том числе вентилируемые наружным воздухом), перекрытия чердачные (с кровлей из штучных материалов) и над проездами; перекрытия над холодными (без ограждающих стенок) подпольями в Северной строительно-климатической зоне

2. Перекрытия над холодными подвалами, сообщающимися с наружным воздухом; перекрытия чердачные (с кровлей из рулонных материалов); перекрытия над холодными (с ограждающими стенками) подпольями и холодными этажами в Северной строительно-климатической зоне

3. Перекрытия над не отапливаемыми подвалами со световыми проемами в стенах

4. Перекрытия над не отапливаемыми подвалами без световых проемов в стенах, расположенные выше уровня земли

5. Перекрытия над не отапливаемыми техническими подпольями, расположенными ниже уровня земли

(1+∑b) – добавочные потери теплоты в долях от основных потерь. Добавочные потери теплоты b через ограждающие конструкции следует принимать в долях от основных потерь:

а) в помещениях любого назначения через наружные вертикальные и наклонные (вертикальная проекция) стены, двери и окна, обращенные на север, восток, северо-восток и северо-запад – в размере 0,1, на юго-восток и запад – в размере 0,05; в угловых помещениях дополнительно — по 0,05 на каждую стену, дверь и окно, если одно из ограждений обращено на север, восток, северо-восток и северо-запад и 0,1 – в других случаях;

б) в помещениях, разрабатываемых для типового проектирования, через стены, двери и окна, обращенные на любую из сторон света, в размере 0,08 при одной наружной стене и 0,13 для угловых помещений (кроме жилых), а во всех жилых помещениях — 0,13;

в) через не обогреваемые полы первого этажа над холодными подпольями зданий в местностях с расчетной температурой наружного воздуха минус 40 °С и ниже (параметры Б) — в размере 0,05,

г) через наружные двери, не оборудованные воздушными или воздушно-тепловыми завесами, при высоте зданий Н, м, от средней планировочной отметки земли до верха карниза, центра вытяжных отверстий фонаря или устья шахты в размере: 0,2 Н — для тройных дверей с двумя тамбурами между ними; 0,27 H — для двойных дверей с тамбурами между ними; 0,34 H — для двойных дверей без тамбура; 0,22 H — для одинарных дверей;

д) через наружные ворота, не оборудованные воздушными и воздушно-тепловыми завесами, — в размере 3 при отсутствии тамбура и в размере 1 — при наличии тамбура у ворот.

Для летних и запасных наружных дверей и ворот добавочные потери теплоты по подпунктам “г” и “д” не следует учитывать.

Отдельно возьмём такой элемент как пол на грунте или на лагах. Здесь есть особенности. Пол или стена, не содержащие в своем составе утепляющих слоев из материалов с коэффициентом теплопроводности λ меньше либо равно 1,2 Вт/(м °С), называются не утепленными. Сопротивление теплопередаче такого пола принято обозначать Rн.п, (м2 оС) / Вт. Для каждой зоны не утепленного пола предусмотрены нормативные значения сопротивления теплопередаче:

  • зона I – RI = 2,1 (м2 оС) / Вт;
  • зона II – RII = 4,3 (м2 оС) / Вт;
  • зона III – RIII = 8,6 (м2 оС) / Вт;
  • зона IV – RIV = 14,2 (м2 оС) / Вт;

Первые три зоны представляют собой полосы, расположенные параллельно периметру наружных стен. Остальную площадь относят к четвертой зоне. Ширина каждой зоны равна 2 м. Начало первой зоны находится в месте примыкания пола к наружной стене. Если неутеплёный пол примыкает к стене заглублённой в грунт то начало переносится к к верхней границе заглубления стены. Если в конструкции пола, расположенного на грунте, имеются утепляющие слои, его называют утепленным, а его сопротивление теплопередаче Rу.п, (м2 оС) / Вт, определяется по формуле:

Rу.п. = Rн.п. + Σ (γу.с. / λу.с)

Rн.п – сопротивление теплопередаче рассматриваемой зоны неутепленного пола, (м2 оС) / Вт;
γу.с – толщина утепляющего слоя, м;
λу.с – коэффициент теплопроводности материала утепляющего слоя, Вт/(м·°С).

Читайте также:
Настенный декоративный элемент из металла

Для пола на лагах сопротивление теплопередаче Rл, (м2 оС) / Вт, рассчитывается по формуле:

Теплопотери каждой ограждающей конструкции считаются отдельно. Величина теплопотерь через ограждающие конструкции всего помещения будет сумма теплопотерь через каждую ограждающую конструкцию помещения. Важно не напутать в измерениях. Если вместо (Вт) появится (кВт) или вообще (ккал) получите неверный результат. Ещё можно по невнимательности указать Кельвины (K) вместо градусов Цельсия (°C).

Продвинутый рассчет теплопотерь дома

Отопление в гражданских и жилых зданиях теплопотери помещений состоят из теплопотерь через различные ограждающие конструкции, такие как окна, стены, перекрытия, полы а также теплорасходов на нагревание воздуха, который инфильтрируется сквозь неплотности в защитных сооружениях (ограждающих конструкциях) даного помещения. В промышленных зданиях существуют и другие виды теплопотерь. Расчет теплопотерь помещения производится для всех ограждающих конструкций всех отапливаемых помещений. Могут не учитываться теплопотери через внутренние конструкции, при разности температуры в них с температурой соседних помещений до 3С. Теплопотери через ограждающие конструкции расчитываются по следующей формуле, Вт:

Qогр = F ( tвн – tнБ) (1 + Σ β ) n / Rо

tнБ – темп-ра наружного воздуха, оС;
tвн – темп-ра в помещении, оС;
F – площадь защитного сооружения, м2;
n – коэффициент, который учитывает положение ограждения или защитного сооружения (его наружной поверхности) относительно наружного воздуха;
β – теплопотери добавочные, доли от основных;
– сопротивление теплопередаче, м2·оС / Вт, которое определяется по следующей формуле:

Rо = 1/ αв + Σ ( δі / λі ) + 1/ αн + Rв.п., где

αв – коэффициент тепловосприятия ограждения (его внутренней поверхности), Вт/ м2· о С;
λі и δі – расчетный коэффициент теплопроводности для материала данного слоя конструкции и толщина этого слоя;
αн – коэффициент теплоотдачи ограждения (его наружной поверхности), Вт/ м2· о С;
Rв.n – в случае наличия в конструкции замкнутой воздушной прослойки, ее термосопротивление, м2· о С / Вт (см. табл.2).
Коэф-ты αн и αв принимаются согласно СНиП а для некоторых случаев приведены в таблице 1;
δі – обычно назначается согласно заданию или определяется по чертежах ограждающих конструкций;
λі – принимается по справочникам.

Таблица 1. Коэффициенты тепловосприятия αв и теплоотдачи αн

Поверхность ограждающей конструкции

αв , Вт/ м2· о С

αн , Вт/ м2· о С

Поверхность внутренняя полов, стен, гладких потолков

Расчет отопления дома. Онлайн калькулятор теплопотерь и мощности котла

Расчет отопления дома включает в себя определение теплопотерь дома и необходимой мощности обогревательных приборов. Представленный онлайн калькулятор упрощает процесс расчета. Также в обзоре приведены альтернативные методики определения теплопотерь.

Калькулятор расчета отопления дома

Для того чтобы рассчитать теплопотери и теплопроизводительность котла, необходимо задать следующие параметры:

  • Тип остекления.
  • Тип теплоизоляции в доме.
  • Соотношение площади остекления.
  • Минимальную температуру региона.
  • Количество стен, выходящих на улицу.
  • Высоту и площадь помещения.

Расчет необходимо производить для каждого помещения отдельно. Если расчет отопления для дома выполняется без разбивки на помещения, точность незначительно снижается. При этом в пункте «число стен выходящих наружу» нужно задать «четыре».

Методика расчета отопления дома

Чтобы самостоятельно рассчитать теплопотери дома, нужно воспользоваться одним из следующих наборов формул:

  1. Сопротивление теплопередаче ограждающих конструкций определяется по формуле R = B / K, где R — тепловое сопротивление; K – коэффициент тепловой проводимости материалов; В — толщина строительного материала. Определив сопротивление теплопередаче можно приступить к расчету непосредственно теплопотери дома Q = S × dT / R, где Q — это теплопотеря; S — площадь ограждающей конструкции; dT — разница температур внутри и снаружи помещения; R — сопротивление теплопередаче.
  2. Более точное значение теплопотерь дома можно получить по формуле Q = 0,1 × Sk × k1 × … × kn, где Q — теплопотеря дома; Sk — площадь помещения; k1 — kn — поправочные коэффициенты для корректировки результата с учетом особенностей помещения; 0,1 — базовое значение удельной тепловой мощности = 100 Вт = 0,1 кВт.

В представленном выше калькуляторе отопления дома использована вторая формула с поправочными коэффициентами. Рассмотрим подробно каждый коэффициент.

к1 коэффициент, учитывающий качество остекления:

Конструкция окна (стеклопакета) Значение k1
В помещении нет окон 0,6
Тройной стеклопакет 0,85
Двойной стеклопакет 1,0
Обычное (двойное) остекление 1,27

к2 коэффициент, учитывающий качество теплоизоляции стен:

Теплоизоляция внешних стен помещения Значение k2
Хорошая теплоизоляция 0,85
Средняя теплоизоляция (два кирпича или 200 мм дерева) 0,85
Плохая теплоизоляция 1,27

к3 коэффициент, учитывающий площадь остекления помещения:

Площадь остекления в зависимости от площади помещения Значение k3
10% 0,8
20% 0,9
30% 1,0
40% 1,1
50% 1,2

к4 коэффициент, учитывающий разность температур внутри и снаружи помещения:

Температура снаружи помещения Значение k4
-10°C 0,7
-15°C 0,7
-20°C 1,1
-25°C 1,3
-30°C 1,5
-35°C 1,7

к5 коэффициент, учитывающий число стен в помещении выходящих на улицу:

Количество стен выходящих на улицу Значение k5
Одна стена 1,0
Две стены 1,2
Три стены 1,3
Четыре стены 1,4
Читайте также:
Самодельный воздушный компрессор

к6 коэффициент, учитывающий помещения над рассчитываемым:

Помещение над рассчитываемым Значение k6
Обогреваемое помещение 0,8
Теплый чердак 0,9
Холодный чердак 1,0

к7 коэффициент, учитывающий высоту помещения:

Высота помещения Значение k7
2,5 метра 1,0
3,0 метра 1,05
3,5 метра 1,1
4,0 метра 1,15
4,5 метра 1,2

Выбрав соответствующие параметры помещения можно с легкостью рассчитать теплопотери каждого помещения. Суммируя показатели каждого помещения, вы получите общие теплопотери дома. Остается только определится с мощностью (теплопроизводительностью) котла. Для этого к общим теплопотерям дома необходимо добавить 15 — 20 % резерв. Эта упрощенная методика применена в рассмотренном выше калькуляторе расчета отопления дома.

Есть и другой способ подбора мощности отопительного котла. По нормативам СНиП на каждые 10 м² используется 1 кВт мощности с учетом 10% запаса. Такой вариант расчетов возможен только для стандартных помещений с хорошей теплоизоляцией и высотой потолков не выше 3 м. Для более точных расчетов используется формула:

MK = S × YMK / 10 (кВт), где:

  • MK — мощность котла.
  • S — площадь отапливаемого помещения.
  • УМК — удельная мощность котла на 10 м² площади дома, которая рассчитывается в соответствии с климатическими условиями в конкретном регионе.
  • Деление на 10 производится, так как УМК дается на 10 м² площади.

Удельная мощность котла с учетом климатических зон:

Регионы УМК
Южные регионы 0,7 — 0,9 кВт
Регионы с умеренным климатом (средняя полоса) 1,0 — 1,2 кВт
Москва и Подмосковье 1,2 — 1,5 кВт
Северные регионы 1,5 — 2,0 кВт

Если котел, помимо отопления дома, будет использоваться для подогрева воды, то следует добавить к полученному результату дополнительно 25% мощности.

Пример расчета теплопотерь каркасного дома и мощности котла

Рассмотрим пример расчета теплопотерь и мощности котла по формуле Q = S × dT / R, где Q — это теплопотеря (Вт); S — площадь ограждающей конструкции (м²); dT — разница температур внутри и снаружи помещения (°C); R — сопротивление теплопередаче (м²×°C/Вт).

Исходные данные:

  • Температура на улице -25°С.
  • Комфортная температура внутри дома +20°С.
  • Каркасный дом 6 × 6 метров.
  • Высота потолка 3 метра.
  • Общая площадь стен S = 72 м².
  • Минераловатный утеплитель со стороны фасада дома имеет толщину 50 мм (B1 = 0, 05 м) и коэффициент теплопроводности K1 = 0,04 Вт/(м²×К).
  • Межстеновой утеплитель стекловата имеет толщину 100 мм (B2 = 0, 1 м) и коэффициент теплопроводности K2 = 0,045 Вт/(м²×К).
  • Внутренняя обшивка ДВП имеет толщину 12 мм (B3 = 0, 012 м) и коэффициент теплопроводности K3 = 0,05 Вт/(м²×К).

Разница температур внутри и снаружи помещения:

dT = 25 + 20 = 45 °С.

Осталось найти сопротивление теплопередаче стен R = B / K, где R — тепловое сопротивление ((м²×К)/Вт); K – коэффициент тепловой проводимости материалов (Вт/(м²×К)); В — толщина строительного материала (м).

  • R1 = 0,05 / 0,04 = 1,28 (м²×К)/Вт.
  • R2 = 0,1 / 0,045 = 2,22 (м²×К)/Вт.
  • R3 = 0,012 / 0,05 = 0,24 (м²×К)/Вт.
  • R = R1 + R2 + R3 = 3,74 (м²×К)/Вт.

Последний показатель необходимый для расчета теплопотерь найден, соответственно Q = 72 м² × 45 °С / 3,74 (м²×К)/Вт = 866 Вт или 0,866 кВт.

Расчета отопления дома осталось дополнить мощностью котла. Для этого к расчетному значению теплопотерь ограждающей конструкции прибавим 20 % запаса. 0,866 × 1,2 ≈ 1 кВт — такой мощности должен быть котел под заданные параметры дома. Как видно, мощность незначительная, и с обогревом рассмотренного дома 6 × 6 метров справится обычный электрический конвектор. Это, во-первых, обусловлено хорошей теплоизоляцией стен, а, во-вторых, тем, что при расчетах не учтено много факторов (теплопотери через окна, двери, перекрытия). Поэтому для более точного расчета отопления дома лучше воспользоваться онлайн калькулятором или формулой, где учтены все факторы.

Расчет теплопотерь дома: подробная инструкция с формулами + онлайн-калькулятор быстрого расчета

Комфортный климат в доме зависит от тепловых потерь. Чтобы не тратить лишние средства на отопление нужно учитывать многие факторы, такие как потеря тепла через стены во внешнюю среду, прогрев пола, материал и установка окон, исправность отопительной и вентиляционной системы и т.д.

Зачем нужен расчет теплопотерь дома?

Расчет теплопотерь дома – это учет всех составляющих, влияющих на потери тепла:

  1. Внешняя среда;
  2. Внутренняя составляющая.

Особенно актуально знать потери тепа в холодное время года. Решающим фактором здесь становится разность температур между внешней и внутренней средой. Потери тепла в зависимости от строительного материала необходимо рассчитать перед постройкой здания. Различные материалы характеризуются разной теплопроводностью. Дом, построенный из кирпича и бруса, по-разному задерживают тепло, и, соответственно для них требуется различный расход топлива на обогрев.

Очень большое влияние на сохранение тепла в помещении оказывает площадь. Недаром в Сибири бани строят маленькими, с низкими потолками.

Так же одним из факторов, влияющих на потерю тепла в помещении, является качественная теплоизоляция. Теплоизоляция, выполненная из некачественных материалов или посаженная на неправильный герметик (клей), будет только ухудшать ситуацию. В полостях такого материала может скапливаться вода. А, как известно, вода хорошо проводит тепло и не сохраняет его.

Читайте также:
Нужно ли покрывать декоративную штукатурку воском

Общая потеря тепла складывается из всех составляющих:

Q=Qстен+Qокон+Qпола+Qкровли Qвытяжных систем

  • Рассчитать теплопотерю можно воспользовавшись он-лайн калькулятором. Здесь мы рассмотрим, как рассчитать теплопотери дома, учитывая основные факторы

Влияние строительных материалов

По требованию СанПина максимальная разница между температурой воздуха и температурой стены должна быть 4°С. Этот показатель зависит от термического сопротивления материала.

Для каждого материала свой показатель термического сопротивления выраженный в °С м 2 /Вт:

  • Кирпичная кладка – 0,73
  • Брус – 0,83
  • Керамзитная плита – 0,58

Однако это не единственный показатель, влияющий на тепло в доме. Притом что, тепловое сопротивление дома из бруса почти такое же как у кирпичной кладки, он гораздо хуже сохраняет тепло. Связано это с тем, что между бревен находятся зазоры, которые необходимо прокладывать утеплителем. В кирпичной кладке все зазоры закрыты растворов цемента, который увеличивает термическую сопротивляемость почти вдвое. Керамзитная плита теряет тепло за счет швов. Поэтому дополнительные потери также должны быть учтены при подсчете тепловых потерь.

Теплопотери стен

  • Kст – коэффициент теплопроводности материала, °С м 2 /Вт;
  • Fст – площадь стены, м 2 ;
  • tвнут – температура внутри помещения, °С;
  • tвнеш – температура снаружи, °С.

Стены дома непосредственно контактируют с внешней средой, поэтому при правильной постройке большая часть тепла будет уходить именно через них. Помимо материала на теплопотери за счет стен влияет внутренняя и наружная отделка, количество слоев стены и их теплопроводность, толщина стены. Слабыми местами в стеновых потерях являются потери на швы между панелями, различные технологические отверстия.

Для того чтобы сократить потери необходимо между слоями стены создать воздушную прослойку или прослойку, утепленную пористым утеплителем, так как воздух плохо проводит тепло и помогает сохранить его в помещении. Технологические отверстия также следует обкладывать утеплителем, для лучшего сохранения тепла.

Тепловые потери за счет крыши или потолка

Потери тепла для потолка и крыши рассчитываются по той же формуле, что и для стен. Теплый воздух поднимается вверх, поэтому, чтобы не отапливать улицу, следует серьезно отнестись к утеплению крыши при строительстве. Основным параметром теплопотерь здесь будет неравномерность стыков. От выбора утепляющего материала тоже будет завесить очень многое. Так, например использование эковаты предполагает отсутствие влаги. А, как известно, вместе с теплым воздухом вверх поднимается и пар, который остывая, будет конденсироваться, оседать на утеплителе, замещая воздух и снижать термическое сопротивление утеплителя.

Тепловые потери окон

Потери тепла за счет окон рассчитываются по следующей формуле:

  • Kок – коэффициент теплопроводности материала, °С м 2 /Вт;
  • Fок – площадь стены, м 2 ;
  • tвнут – температура внутри помещения, °С;
  • tвнеш – температура снаружи, °С

Так же как и у стен, снизить теплопотери окон можно за счет многослойности стекла. Также огромное влияние оказывают правильно установленные комплектующие и качественный утеплитель. Также большое влияние оказывает качество материалов, из которых изготовлено окно. Большая площадь окон также оказывает негативное влияние. Поэтому не стоит в регионах с холодными зимами устанавливать большие окна.

Утепление пола

Формула расчета для теплопотерь для пола и фундамента идентична представленной выше. Но есть и свои нюансы. Теплопроводность пола будет разной для фундамента поднятого над грунтом и стоящего непосредственно на грунте.

Для фундамента, поднятого над грунтом основным параметром, влияющим на потерю тепла, является высота подъема. Также в расчет принимаются все слои теплоизоляции между полом и неотаплиевым подполом. Необходимым условием сохранения тепла здесь является герметичность стыков и правильно подобранный утеплитель.

Фундамент, стоящий на грунте, имеет другие теплопотери. Его коэффициент рассчитывается исходя в основном из тепловых потерь слоев утеплителя и толщины пола. Также следует учесть, что в этом случае тепловые потери сокращаются от стен к центру здания.

Вентиляционные системы

Вентиляционные системы сами по себе предназначены для сообщения помещения с внешней средой. Однако при правильной установке они не только не сократят теплопотери, но и помогут сохранить тепло в доме. Основная задача вытяжки убрать лишний пар из помещения. Однако при большом захвате воздуха вентилятором могут происходить ощутимые теплопотери.

Чтобы их избежать следует выбирать вентиляторы с обратным клапаном. Лепестки клапана прикрывают вентиляционное отверстие, когда вентилятор не работает, и не позволяют теплу уходить в вентиляционной отверстие.

Система отопления

Еще одним моментом, влияющим на потерю тепла, является работа самой отопительной системы. Чтобы радиатор не отапливал улицу за ним стоит установить отражающий экран из специального материала.

Перед началом нового отопительного сезона нужно стравить воздух из системы, это поможет сохранить фитинги в нормальном рабочем состоянии. Так же необходимо несколько раз промыть систему, чтобы убрать возможные засоры.

Читайте также:
Расчет мощности потребляемой энергии

Нормальная работа отопительной системы гарантирует комфортные температурные условия в помещении.

Таким образом, расчет теплопотерь помогает сократить расходы на отопление. Основными параметрами, влияющими на тепловые потери являются выбор изоляционных материалов, площадь помещения, разность температур между помещением и окружающей средой, наличие воздушных полостей, а также исправность отопительной и вентиляционной системы.

Расчет теплопотерь дома — калькулятор онлайн

Для того, чтобы спроектировать систему отопления, которая удовлетворяла бы как требованиям комфортного проживания в доме, так и оптимального расходования ресурсов семьи, необходимо сначала рассчитать его возможные теплопотери.

Расчет теплопотерь — это способ, определить примерное количество теплопотерь, которое теряет дом через ограждающий контур за конкретное время, в самый холодный период пятидневки. Единица измерения теплопотерь — Ватты.

Полученный результат приблизительный, и требует экспериментальной проверки, так как не реально учесть все моменты, которые влияют на тепловые потери: неправильная конструкция перегородок, разница между температурой внутри и снаружи, действие осадков, солнечной радиации и ветра. Зная данные показатели, можно выбирать модель системы отопления нужной мощности для любого дома.

Калькулятор онлайн

Логика расчета

Процентное соотношение теплопотерь дома через элементы его конструкции, указанное на картинке, весьма приблизительно, поскольку сильно зависит от их устройства и используемых материалов. Потери тепла на инфильтрацию происходят в результате утечки воздуха через щели, некачественное уплотнение дверей и окон, принудительной и естественной вентиляции помещений. Уносимое с воздухом тепло приходится компенсировать более интенсивной работой системы отопления.

Расчет теплопотерь в данной программе выполняется отдельно для каждой стены, пола и потолка с учетом общих для всех элементов помещения условий. Это сделано исходя из следующих предположений:

  • стены могут как непосредственно соприкасаться с атмосферным воздухом, так и выходить в нетапливаемое или плохо отапливаемые помещения;
  • исходя из этого толщина стен и используемый для них материал могут отличаться;
  • конструкция окон также может быть неодинакова.

Для расчета теплопотерь помещения в общем случае необходима площадь рассматриваемых элементов, характеристики теплопроводности или сопротивления теплопередаче используемых материалов и их толщина, а также разница между температурой воздуха внутри помещения (20-22 градуса) и температурой воздуха снаружи.

Температура атмосферного воздуха должна приниматься по самому холодному периоду отопительного сезона и указывается в общих условиях для расчета; если для какой-то стены она другая, введите ее в поле «температура воздуха снаружи помещения». Для потолка температура, отличная от атмосферной, может быть введена в поле «температура над», а для пола — «температура снизу»(вводится обязательно). Температура над потолком зависит от наличия или отсутствия утепления чердачного помещения; под полом — от наличия или отсутствия подвала и его типа (чаще всего принимается 0-7+ градусов).

Наружные двери могут выходить прямо на улицу или в неотапливаемое помещение; последнее обстоятельство учитывается в программе умножением рассчитанных теплопотерь через дверь на коэффициент 0.7.

Расчетные потери тепла на инфильтрацию воздуха можно регулировать варьируя значения, вводимые в поле «доля объема воздуха в помещении, подлежащая ежечасному обмену»; дело в том, что требуемый СНИПом ежечасный обмен всего объема воздуха, находящегося в доме, на практике считается завышенным и приводящим к большим затратам на отопление.

Коэффициенты теплопроводности используемых в строительстве материалов берутся из соответствующих таблиц или по данным изготовителей. Это касается и сопротивления теплопередачи стеклопакетов и им подобных конструкций. Что касается стеклопакетов, то при их выборе следует обращать внимание на обозначение.

Например, в обозначении стеклопакета 4-10ap-4: 4 -толщина стекла; 10-расстояние между стеклами; ap — указывает, что это пространство заполнено инертным газом аргоном, что повышает его сопротивление теплопередаче.

В обозначении 4-14-4-14-4и «и» указывает,что стекла имеют мягкое низко эмиссионное покрытие; к-стекло имеет более твердое покрытие, защищено от мелких повреждений, его покрытие низко эмиссионное; pi – на стекло нанесена энергосберегающая пленка и др.

Приведенная в правой части рисунка схема относится к случаю, когда под домом нет подвала («пол на грунте») для упрощения решения сложной задачи определения теплопотерь через пол в грунт применяется методика разбиения площади ограждающих конструкций на 4 зоны.

Каждая из четырех зон имеет свое фиксированное сопротивление теплопередаче в м2·°с/вт:r1=2,1 r2=4,3 r3=8,6 r4=14,2. Зона 1 представляет собой полосу (при отсутствии заглубления грунта под строением) шириной 2 метра, отмеренную от внутренней поверхности наружных стен вдоль всего периметра; зоны 2 и 3 имеют также ширину 2 метра и располагаются за зоной 1 ближе к центру здания; зона 4 занимает всю оставшуюся центральную площадь.

В действительности же зоны 3 и 4 при небольших размерах дома могут отсутствовать. В заключение следует указать, что в программе используются следующие общепринятые коэффициенты:

  • 23 — коэфф. теплоотдачи от стен к наружному воздуху
  • 8.7 — коэфф. теплоотдачи от внутреннего воздуха к стенам
  • 6 — коэфф. теплоотдачи от внутреннего воздуха к полу
  • 12 — коэфф. теплоотдачи от потолка к наружному воздуху если неотапливаемый чердак,
  • 1.18 — поправочный коэфф. при расчете теплопотерь пола не на грунте (по снип).
Читайте также:
Перепад фундамента по высоте: как исправить

А также доступные в калькуляторе коэфф. теплоотдачи от пола к наружному воздуху/грунту для различных видов подвалов. Необходимо также отметить,что по правилам обмера зданий для расчета теплопотерь длина стен определяется по его наружному периметру, а их высота — от поверхности чистового пола до верхней плоскости потолочного перекрытия. Эту величину следует указывать в поле «высота помещений hp».

Общие замечания по порядку расчета

  • Сначала рассчитываются теплопотери через двери, стены и окна, все сразу, то есть после ввода всех данных по ним, или по отдельности — после ввода параметров, например по одной из стен или двери; затем рассчитываются таким же образом теплопотери через потолок, пол и потери на инфильтрацию.
  • Каждый элемент может быть пересчитанный повторно после корректировки его параметров; при этом следует учесть, что если вы изменяете количество слоев материалов, сами материалы, наличие или отсутствие окон, перед всеми этими действиями следует нажать кнопку «сброс входных данных».
  • Расчет теплопотерь через пол, потолок и инфильтрацию возможен только после расчета потерь через стены.
  • «Температура воздуха снаружи» (для стен) и «температура над» (для потолка) вводятся в случае, если они отличаются от температуры, указанной в общих условиях для расчета.
  • Перед расчетом теплопотерь через стены из их площади вычитается площадь окон и двери.

Потери тепла через наружную оболочку

Значительно повышается экономия тепловой энергии при качественном утеплении контура дома и крыши. Необходимость в энергосберегающем ремонте возникает, когда в течение года тратится 100 кВт электрической энергии или 10 кубов природного газа, из расчёта на 1 кв. метр отапливаемой площади, с учётом перегородок.

Энергосберегающее здание — дом, имеющий сплошную теплоизоляцию по всему каркасу нагретой поверхности. В качестве теплоизолирующего материала отлично подходит пеностекло, фанера, пенопласт, гипсокартон. Металл (сталь), также является отличным проводником тепловой энергии. Приобретая стройматериалы, обязательно нужно обращать внимание на коэффициент теплопроводности, который указан в паспорте.

Варианты выхода нагретого воздуха:

  • Крыша — толстый слой теплоизоляционного кровельного материала значительно уменьшит теплопотери.
    К сведению: Если строение деревянное, то укладка теплозащиты на крыше затруднительна, так как происходит набухание древесины, и она может повредиться от влажности.
  • Стены — добиться снижения теплопотерь можно также используя специальное наружное покрытие. При утеплении изнутри, особенно если повышенная влажность, будет образовываться конденсат за изоляцией.
  • Пол — в данном случае, практичнее делать утепление изнутри.
  • Фундамент — его контакт с холодным грунтом значительно увеличивает теплопотерю на первом этаже.
  • Термические мосты — наружные теплопроводники, не редко через них уходит большая часть нагретого воздуха. К ним относятся: бетонное половое покрытие, которое продолжается на балконе, дверные проёмы и окна, особенно классические, двойные. Есть также мосты, относящие к временным, когда перегородки крепятся на металлические элементы.

Современные окна — это стеклопакеты однокамерные и двухкамерные, имеющие специальную отражающую поверхность, что понижает потери излучения. Многослойное остекление более эффективно сохраняет тепло, чем обычное двойное окно.

Тепловые потери на вентиляцию

Обычно, у дома есть воздушные утечки — это оконные и дверные проёмы, и крыша, что создаёт воздухообмен. Но в зимнее время, этот вариант приводит к значительному выходу тёплого воздуха, поэтому с помощью новых технологий были разработаны конструкции уменьшающие утечку нагретых воздушных масс наружу.

Современные дома нуждаются в постоянном вентилировании, так как они имеют высокую воздухонепроницаемость. Для уменьшения теплопотерь связанных с вентиляцией, которые составляют от 10 до 40%, используются новейшие модели вентиляционных систем. Калькулятор теплопотерь дома делается по каждой комнате отдельно, Далее, определяется тепловой расход на вентиляцию — его объём и сколько раз происходила его смена в здание.

Рассчитывая теплотехнические вентиляционные потери, при помощи онлайн калькулятора, нужно учитывать предназначение дома. Для ванной комнаты и кухни требуется повышенный уровень вентиляции.

Минимальное утепление наружных стен

Для проведения онлайн теплотехнического расчёта для внешних стен существует несколько сложных методик, с учётом конвекционного обмена, излучения и т. д., но эти данные часто бывают излишними и не влияющими на итог.

Однако, есть более простой теплотехнический онлайн калькулятор для расчёта теплопотерь дома. Для большей точности, к данному показателю допустимо добавить 1 — 5%.

Важно! Применяя теплотехнический калькулятор, при расчёте потерь тепла дома, следует учитывать время пребывания человека в каждой комнате, чем оно меньше, тем за основу берутся меньшие температурные показания.

Есть два способа рассчитать расход тепла в доме:

Материал

Коэффициент теплопроводимости

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: