Почему между нулем и заземлением есть напряжение и как от этого избавиться?

Тема: Напряжение между PE и N

Опции темы
  • Версия для печати
  • Отправить по электронной почте…
  • Подписаться на эту тему…
  • Отображение
    • Линейный вид
    • Комбинированный вид
    • Древовидный вид
  • Напряжение между PE и N

    Доброго времени суток. Дабы не плодить темы, да и вопрос схожий, отпишусь здесь.
    В общем решил ремонт частичный в квартире сделать. Ремонту подверглись кухня и коридор. Так же решил начать менять проводку по комнатно, по мере прохождения ремонтов в других местах квартиры. Поставили мне новый щит – автоматы – вводной на 25А, 16А на розеточную группу и 10А на свет. Там же 2 шины – нулевая и заземления. Щит запитан от этажного щита проводом ВВГнг-LS 3х4. Провод заземления ни куда не подключен, т.к. проводка старая двужильная (дом кирпичный, щиты на этаже.). Проводка розеточная – 3х2,5, освещение – 3х1,5. Две распаечные коробки, все соединения выполнены ваговскими клемниками. А теперь внимание вопрос – откуда могло появиться напряжение между между землей и нулем? Земля подключена только к шине в новом щитке, а шина в свою очередь ни с кем больше не контактирует. Напряжение не слабое – было и 70В, и 96В. При чем при включении/отключении нагрузки просадок не замечено. Отключил везде электричество, прозваниваю ноль с землей – не контактирует. Куда смотреть?

    P.S. В одной из комнат, где осталась старая проводка, подключен пилот. Розетка с заземл. контактами, но они не подключены. Мерюю напругу между нулем и заземляющим контактом – 60 В. Как.

    Если ваше оборудование пробивает на корпус (а именно он подключается к заземляющему контакту штепсельной вилки), то там появляется потенциал. Если бы шина PE (земля) была заземлена или соединена с шиной нуля, то потенциал бы ушел в землю, а так он сидит там и ждет, когда кто-нибудь прикоснется к корпусу оборудования.

    Соединение шин PE (земля) и N (ноль) в шитке ИМХО меньшее зло, чем соединение их в розетке или неприсоединение шины ни к чему вообще.
    По хорошему, шины PE и N должны соединяться и присоединяться в этом месте к заземлителю.
    Если в цепи фаза+ноль стоит УЗО, то разветвление нуля на рабочий и защитный (разделение PEN на PE и N) должно делаться перед входом нуля в УЗО, чтобы ток утечки приходящий по PE проводнику (земли) прошел мимо УЗО и УЗО бы сработало.

    Последний раз редактировалось ЭлектроАС; 27.04.2011 в 20:41 .

    Про оборудование и пробой на корпус изоляции я и сам первым делом подумал. Только вот незадача в том, что с полностью отключенными потребителями (включая освещение) напряжение между РЕ и N сохранилось. Провел я ряд замеров – мегометром Sonel MIC-3 мерял всю проводку (правда не рассоединял клемники в распайках), при 1000В и минуте по большенству жил – от 130 до 250 МОм, в зависимости между чем мерять. Меня несколько насторожило. Как прокладывался кабель я видел, визуально механических повреждений не обнаружил. Для нового кабеля я считаю это мало. Имея доступ к лабораторным приборам, неоднакратно мерял друзьям и новую и старую проводку. Изоляция новой проводки практически всегда уходила за предел измерения прибора (>3000 МОм). Было несколько случаев порчи кабеля ножами монтажников, но прибор сразу показывал очень малое значение, да и не выходил на испытательное напряжение. Так что не понятно откуда у меня такие плохие (пускай и больше нормативных 0,5 МОм) значения. Может кабель бракованный? Может от шткутарки слегка промокший.
    Вторым делом померял петлю фаза-нуль. В общем ток к.з. – 183А, напряжение 236В. Тоже несколько удивился малым током к.з. Пошел в подъезд, отключил себя и померял от пакетника – почти тоже самое. У соседей (на других фазах) схожий результат. В нашем этажном щите вроде как все контакты затянуты. Причины? Плохой ноль? Может ли это являться причиной моих проблем?
    Ну и самое интересное – то что отсоединив во всех распайках и щите PE, но оставив его подключенным в розетках, проблема не исчезла. Отключая последовательно каждую розетку от РЕ (скорее наоборот) пытался найти бракованную розетку, но увы таковой не нашлось. После отсоединения напряжение между РЕ и N в розетке около 2В. Однако воткнув стиралку (месяц отроду, пробег небольшой) и померяв напряжение между барабаном и смесителем, увидел 76В – терпимо, но ощущения неприятные. Сразу оговорюсь – стиралка не при делах, т.к. это происходит с любым элетроприбором с евророзеткой.

    Так на кого же грешить? на ноль?

    Напряжение между нулем и землей

    При проверке параметров сети вольтметром электромонтёры, как правило, измеряют напряжение попарно между всеми тремя проводниками в трёхпроводной сети – L-N, L-PE и N-PE. Теоретически, в последнем случае показания прибора будут равны “0”, но так бывает не всегда. В некоторых случаях напряжение между нулем и землей может быть намного больше и даже достигать 220 В.

    Что такое “ноль” и “земля” согласно ПУЭ

    Современная однофазная электропроводка выполняется тремя проводами и только по одному из них подаётся напряжение, а для трёхфазного питания необходимы пять проводников, из которых питающими являются три. Правила Устройства Электроустановок указывают, зачем нужны оставшиеся, какова функция этих проводов и требования к их монтажу и подключению.

    Чем ноль отличается от заземления

    Первоначально, с появлением трёхфазного электроснабжения, электропитание подводилось к зданиям при помощи четырёх проводников – три фазных и нейтраль, а в однофазной квартирной электропроводке использовались только два провода – ноль и фаза.

    Согласно ПУЭ, гл.1.7 такая система электроснабжения называется TN-C, в ней четвёртая жила в электросхемах обозначается PEN и выполняет функции сразу двух проводов – ноля N и земли РЕ. В современной электропроводке эти проводники разделены.

    • Нейтраль (ноль) N . Это рабочий провод, который служит для питания электроприборов в однофазной сети и для протекания уравнительных токов в трехфазной сети. Его отключение без отключения фазных проводов не допускается. Согласно правилам цветовой маркировки проводов изоляция нулевого проводника имеет синий или голубой цвет.
    • Заземление (земля) РЕ . Защитный проводник, используется для заземления корпусов электроприборов и щитков. Отключать этот провод автоматическими выключателями или другими разъединителями запрещено. Оболочка заземляющего провода окрашена в продольные жёлто-зелёные полосы.

    Защитные функции нулевого и заземляющего проводников

    Для защиты от поражения электрическим током при нарушении изоляции между корпусом оборудования и элементами электросхемы, находящимися под напряжением, металлические детали корпуса необходимо заземлять. Для этого допускается использовать только защитный заземляющий проводник РЕ.

    Читайте также:
    Плиточный клей Юнис (Unis): характеристики, расход клея для плитки Юнис

    Нейтраль N так же соединяется с глухозаземлённой нейтралью трансформатора, но соединение с контуром заземления при помощи этого проводника называется “зануление” и выполнять его запрещено по целому ряду причин:

    • нейтральный провод, особенно в однофазных сетях, подключается через автоматический выключатель, что для защитного заземления запрещено согласно ПУЭ 1.7.83;
    • повышенная, по сравнению с заземлением, опасность выхода этого провода из строя, связанная с протеканием по нему тока;
    • при обрыве или отключении защитного зануления напряжение в розетке отсутствует, но корпус при этом окажется присоединённым к фазному проводнику через нейтраль сети и включённые электроприборы.

    Эти провода прекладываются раздельно от потребителя до трансформаторной подстанции, где они подсоединяются к глухозаземлённой нейтрали трансформатора.

    Современные нормы ПУЭ допускают монтаж объединённого провода PEN на участке от трансформатора до вводного электрощита в многоквартирном здании или отвода от воздушной линии к частному дому, где этот проводник разделяется на провода N(нейтраль) и РЕ(земля).

    Важно! Место разделения необходимо дополнительно присоединять к контуру заземления здания, после чего соединение проводов не допускается.

    Напряжение между нулем и землей

    В системе электроснабжения, которая используется для подвода электричества к жилым домам, вторичные обмотки питающего трансформатора соединены в “звезду”, к средней точке которой подключаются контур заземления и нейтральный провод. Существует несколько причин, почему на нулевом проводе появляется напряжение.

    Почему между нейтралью и заземлением всегда есть разность потенциалов

    Основная причина наличия напряжения между PE и N заключается в том, что по нулевому проводу протекает электрический ток и, согласно закону Ома, имеется падение напряжения, зависящее от сопротивления токопроводящей жилы.

    Несмотря на то, что материал, из которого изготовлены провода, отличается высокой проводимостью, большая длина линий приводит к значительным потерям в сети. Поэтому при расчёте сечения кабелей учитываются два фактора – нагрев проводов и допустимое падение напряжения, причём выбирается бОльшее из двух значений.

    При большой протяжённости линии сечение провода, выбранное по потерям, многократно превышает необходимое сечение, выбранное по нагреву.

    В пятипроводной системе электроснабжения напряжение между землёй и нейтралью отсутствует только в точке соединения этих проводов. По мере удаления от этого места разность потенциалов между РЕ и N увеличивается на величину падения напряжения в нейтральном проводнике и тем выше, чем дальше от подстанции и чем хуже распределена нагрузка по фазам и больше уравнительный ток в нейтрали.

    Значительное количество линий электропередач были рассчитаны и проложены ещё в советское время, когда нагрузка на провода была намного ниже.

    Сейчас с появлением электрических бойлеров, стиральных и посудомоечных машин и другого оборудования потребляемая мощность и ток выросли. Это привело к росту потерь в проводах, в том числе в нейтральном, и росту напряжения между землёй и нулём.

    Нормальное напряжение между фазой нулем и землей

    В нормативных документах не нормируется, каким должно быть напряжение между нулем и землей, однако указаны допустимые колебания напряжения в сети. При напряжении 220 В отклонения могут составлять -33 +22 В.

    Если предположить, что трансформаторная подстанция, чтобы компенсировать падение напряжения в проводах, выдаёт завышенное напряжение 242 В, учитывая потери в нейтральном проводе, разность потенциалов между нейтралью и землёй составит больше 30 В.

    Естественно, такое напряжение нельзя считать нормой, но в некоторых сёлах, имеющих большую площадь и протяжённость линий в конечной точке ЛЭП фазное напряжение составит меньше 170 В, а между нулём и землёй можно включить лампочку 36 В.

    Почему напряжение между нейтралью и заземлением может отсутствовать

    В некоторых случаях разность потенциалов между N и РЕ равна 0. Это происходит при реконструкции системы электроснабжения TN-C и преобразовании её в систему TN-C-S. При этом к дому подходит совмещённый проводник PEN, который во вводном щитке разделяется на два провода – N и РЕ с дополнительным заземлением места разделения.

    В этой ситуации длина проводов составляет десятки метров, а не километры, как в воздушных или подземных линиях, и, соответственно, падение напряжения в нейтральном проводе и разность потенциалов между нолём и землёй не превышает погрешность прибора.

    Причины повышенного напряжения

    Кроме потерь в проводах существуют и другие причины, почему есть напряжение между нулем и землей.

    Причиной постоянного наличия напряжения, поднимающегося до 50 В, может быть Неравномерное подключение потребителей по фазам. В идеальных условиях мощность нагрузки должна быть распределена равномерно, при этом уравнительный ток отсутствует и напряжение между РЕ и N равно нулю.

    Так бывает не всегда, при подключении к одной из фаз мощных электроприборов или большом расстоянии между ЛЭП и отдельно стоящим зданием в нейтральном проводе протекает значительный ток, из-за чего потери в нем возрастают, и появляется разность потенциалов между нейтралью и землёй.

    В случае наличия высокого напряжения причиной чаще является обрыв нейтрали. Это аварийная ситуация, У которой есть два варианта:

    • Обрыв в однофазной сети. При этом на нулевой клемме появляется сетевое напряжение, исчезающее при отключении всех ламп и выключении всех вилок из розеток. Напряжение в розетке при этом отсутствует.
    • Обрыв нейтрали в трёхфазном кабеле. В этом случае величина потенциала между нейтралью и землёй из-за отсутствия уравнительного тока колеблется в диапазоне 0-220 В, а напряжение розетке при этом может достигать 380 В.

    Напряжение 110 Вольт

    В некоторых случаях разность потенциалов между нейтралью и землёй составляет 110В, или половину сетевого. Это связано с особенностями электросхемы некоторых бытовых приборов. Электронная аппаратура этих устройств, с одной стороны, чувствительна к высокочастотным помехам, а с другой стороны, сама является источником этих помех.

    Для защиты от этого явления в аппарате параллельно сетевому кабелю устанавливается два конденсатора, включённых последовательно. Соединение этих элементов, в свою очередь, подключается к корпусу электроприбора и заземляющему проводнику питающего кабеля.

    При включении аппарата в розетку на корпусе такого устройства и заземляющей клемме вилки появляется напряжение 110В. В том случае, если электропроводка выполнена по трёхпроводной схеме с заземляющим проводом, который не подключён к контуру заземления или подходящему к зданию проводнику РЕ на всех заземляющих проводах и клеммах квартиры или дома появится высокое напряжение.

    Что делать в случае высокого напряжения

    Если между нейтралью и заземлением присутствует значительная разность потенциалов, то эту проблему желательно, а в некоторых случаях необходимо, решить. Способы справиться с этой ситуацией зависят от того, какое напряжение между нулем и землей.

    • Превышает 30 В, а напряжение в розетке ниже 200 В. Такое напряжение появляется из-за большой длины питающих проводов и недостаточного сечения токопроводящей жилы. Самостоятельно изменить ситуацию практически невозможно, решением проблемы может стать установка стабилизатора напряжения.
    • Напряжение 110 В. Если напряжение между нулем и землей 110 Вольт, то необходимо отключить заземляющую клемму в розетке, в которую включено устройство с фильтром из двух конденсаторов. Однако прикосновение к корпусу такого аппарата останется болезненным. Для полного решения проблемы необходимо линию заземления подключить к контуру или отключить данный фильтр от корпуса электроприбора.
    • Напряжение между нулевой и заземляющей клеммами 220 В, в розетке питание отсутствует. Такие данные вольтметр показывает при обрыве нулевого провода в квартире или после выполнения однофазного отвода от трёхфазной сети. Фаза на нейтральные проводники попадает через включённые лампы или подключенные к розеткам электроприборы, даже если они в данный момент не работают.
    • Колеблется в диапазоне 0-220 В, а напряжение в розетке стремиться к 0 или 380 В. Причина этой аварийной ситуации в обрыве нейтрали в подходящем кабеле. Нужно немедленно выключить вводной автомат и обратиться в электрокомпанию.
    Читайте также:
    Накопительные септики для дачи - понятие, особенности устройства, как работает, как выбрать, как установить, как сделать самому

    Вывод

    Как видно из статьи, небольшое напряжение между нулем и землей имеется почти всегда. Это не является проблемой, если оно не превышает 5-10 В. В противном случае необходимо принимать меры, чтобы это явление не повредило электроприборы или не мешало ими пользоваться. В зависимости от его величины нужно установить стабилизатор напряжения, отсоединить встроенный фильтр в бытовой технике или отключить вводной автомат и устранить аварию.

    Откуда напряжение между нулем и землей 140 вольт и что делать в этом случае?

    Методы определения

    Рассмотрим способы определения нулевого и заземляющего проводников, от очень простого к более сложным.

    Цепь имеет защиту по дифф-току. Если весь объект или исследуемая ветка снабжены защитой по дифференциальному току – дифф-автоматом или УЗО, задача значительно упрощается. Нужно контрольный прибор, например лампа с проводниками, подключить к фазе и к одному из исследуемых проводников. Если дифф-защита не сработала, значит лампа подключена к рабочему нолю. Если происходит срабатывание УЗО при подключении лампы – вы ее подключаете к фазе и земле. Все достаточно просто и заодно проверите устройство защитного отключения на практике.

    Перед выполнением такого теста нужно убедиться в работоспособности дифф-защиты, нажав кнопку “тест” на защитном аппарате. Следует отметить, что способ будет работать при условии, что ток через лампу будет превышать номинальный дифференциальный ток аппарата. То есть, при использовании лампы накаливания (энергосберегайка не подходит) сработает УЗО с током утечки 10-30 мА. Вводное УЗО на утечку 300 мА может не сработать, для надежной проверки нужно брать прибор помощнее.

    Сравнение с заземляющими контактами розеток. Данный метод будет работать если на вводе стоит двухполюсный автомат, размыкающий рабочий ноль и в помещении имеются розетки с заземлением. Вводной автомат следует отключить, тем самым мы разомкнем любую связь ноля с землей. По возможности следует отключить все приборы из розеток.

    Далее следует “прозвонить” мультиметром в режиме измерения сопротивления заземляющий контакт одной из розеток с исследуемыми контактами. При соединении с нулевым проводом, мультиметр должен показывать большое сопротивление, с заземляющим контактом на неизвестной точке с землей розетки сопротивление практически нулевое.

    Таким способом можно заодно проверить правильность подключенных розеток: при отключенном вводном двухполюсном автомате, нулевые и заземляющие контакты прозваниваться не должны. Ну это при условии, что проводка изначально исправна и верно смонтирована.

    Лезть в щит. Если предыдущие способы реализовать нет возможности, придется лезть в “начинку” электрощита. Думаю напоминать здесь о технике безопасности не стоит: ее никто не отменял. На самом деле способ достаточно прост: нужно найти нулевой проводник, уходящий в помещение и отсоединить его от клемм щита. Затем прозвонить с исследуемыми контактами: с которым будет звониться – тот и есть нулевой проводник.

    В случае с щитом вполне может возникнуть сложность, когда даже в щите сложно отличить ноль от заземления. В этом случае понадобятся токовые клещи. Нужно включить напряжение и нагрузку в помещении, и исследовать клещами неизвестные проводники в щите – где будет ток, так и рабочий ноль

    Обратите внимание: метод работает только в том случае, когда вы точно знаете, что один из проводников – ноль, а другой – земля

    Все вышеописанные методы работают как с заземлением, так и с “занулением”

    Определить контакты при подключении электроплиты. Иногда возникает необходимость заменить розетку электроплиты, а проводка советских времен или начала 90-х, одноцветная. Для верного определения зануления электроплиты необходимо условие – двухполюсный автомат во вводном щите, отключающий и фазу, и ноль от всей квартиры.

    Итак, при включенной электроэнергии определяем фазу на ичсследуемых выводах для будущей розетки – этот контакт помечаем и откидываем в сторону, далее он нам не нужен. Потом нужно определить ноль в любой розетке в квартире – так как проводка советская, земли там нет, поэтому нолем окажется тот вывод, на котором не светится отвертка-индикатор.

    Теперь обесточиваем всю квартиру и мультиметром прозваниваем ноль обычной розетки с двумя оставшимися контактами на электроплиту. Тот контакт, который звонится с нолем розетки – рабочий, а тот что не звонится – зануление (земля). Если же звонятся оба контакта – нужно искать ошибки в электропроводке. При организации зануления в советское время, его присоединяли к клемме “PEN” без каких-либо коммутационных аппаратов.

    Основные правила проверки заземления

    Чтобы обеспечить безопасность и надежность работы, проверьте мультиметром или тестером розетки переменного тока в своем частном доме. Прежде чем подключаться к источнику переменного тока, выполните проверки источника питания переменного тока.

    1. Выключите автоматический выключатель, который питает щит. К выключателю прикрепите тег S229-0237.
    2. Используйте измеритель сопротивления заземления, чтобы проверить сопротивление между заземляющим штырем приемника с каждым из фазных штырьков. Тест проверяет короткое замыкание на землю или разводку проводки.
    3. Используйте тестер заземления, чтобы проверить бесконечное сопротивление между фазными штырьками. Тест проверяет короткую проводку.
    4. Используйте мультиметр для измерения соответствующих напряжений между фазами. С помощью мультиметра убедитесь, что напряжение на розетке переменного тока правильное.
    Читайте также:
    Обрешетка под фальцевую кровлю: ГОСТ

    Как работает заземление

    Мультиметры иногда называют цифровыми вольтметрами. Они способны производить широкий спектр электрических измерений. Большинство моделей имеют большой ЖК-дисплей наверху, набор из 3 соединений внизу для тестовых зондов и циферблат в середине. Для проверки электрической розетки, нужно использовать только настройку напряжения переменного тока.

    1. Наличие тестовых проводов счетчика обычно подразумевает красные и черные цвета.
    2. На одном конце имеется короткий толстый разъем, называемый штепсельной вилкой, а на другом узкие острые металлические зонды с жесткими пластиковыми ручками.
    3. Чтобы измерить данные, вставьте черную штепсельную вилку в разъем, обозначенный «COM» на счетчике.
    4. Один из оставшихся 2 разъемов должен иметь «V» для напряжения, а греческая буква omega, которая выглядит, как подкова, символизирует сопротивление.
    5. Необходимо найти этот разъем, и подключить в него красный провод.

    Посмотрите на шкалу на счетчике и определите настройку напряжения переменного тока. Некоторые модели имеют отдельные положения для переменного и постоянного напряжения, в то время как другие имеют одно значение и кнопку, которая позволяет переключаться между настройками тока.

    Большинство выходов поляризованы, это означает, что один слот шире другого. Более широкий слот является отрицательным или заземленным, а более узкий означает напряжение.

    Вставьте черный провод в более широкий слот, а красный в более узкий. Дисплей должен показывать значение от 109 до 121 вольт, стандартный диапазон.

    Какое это имеет значение, и почему это так важно? Это не проблема для ламп или других простых электроприборов, но это может вызвать проблемы для сложной электроники. Затем выньте черный зонд из широкого гнезда, и переместите его в круглое (заземление) в нижней части розетки. Напряжение должно быть одинаковым. Наконец, вставьте один зонд в более широкий нейтральный паз, а другой в круглое заземление. Напряжение должно быть равно нулю

    Обычные лампочки могут не пострадать при отсутствии заземления, но электроприборы могут выйти из строя.

    Методы определения

    Рассмотрим способы определения нулевого и заземляющего проводников, от очень простого к более
    сложным.

    Цепь имеет защиту по дифф-току. Если весь объект или исследуемая ветка снабжены защитой по
    дифференциальному току — дифф-автоматом или УЗО, задача значительно упрощается. Нужно контрольный
    прибор, например лампа с проводниками, подключить к фазе и к одному из исследуемых проводников. Если
    дифф-защита не сработала, значит лампа подключена к рабочему нолю. Если происходит срабатывание УЗО
    при подключении лампы — вы ее подключаете к фазе и земле. Все достаточно просто и заодно проверите
    устройство защитного отключения на практике.

    Перед выполнением такого теста нужно убедиться в работоспособности дифф-защиты, нажав кнопку «тест» на
    защитном аппарате. Следует отметить, что способ будет работать при условии, что ток через лампу будет
    превышать номинальный дифференциальный ток аппарата. То есть, при использовании лампы накаливания
    (энергосберегайка не подходит) сработает УЗО с током утечки 10-30 мА. Вводное УЗО на утечку 300 мА
    может не сработать, для надежной проверки нужно брать прибор помощнее.

    Сравнение с заземляющими контактами розеток. Данный метод будет работать если на вводе стоит
    двухполюсный автомат, размыкающий рабочий ноль и в помещении имеются розетки с заземлением. Вводной
    автомат следует отключить, тем самым мы разомкнем любую связь ноля с землей. По возможности следует
    отключить все приборы из розеток.

    Далее следует «прозвонить» мультиметром в режиме измерения сопротивления заземляющий контакт
    одной из розеток с исследуемыми контактами. При соединении с нулевым проводом, мультиметр должен
    показывать большое сопротивление, с заземляющим контактом на неизвестной точке с землей розетки
    сопротивление практически нулевое.

    Таким способом можно заодно проверить правильность подключенных розеток: при отключенном вводном
    двухполюсном автомате, нулевые и заземляющие контакты прозваниваться не должны. Ну это при условии,
    что проводка изначально исправна и верно смонтирована.

    Лезть в щит. Если предыдущие способы реализовать нет возможности, придется лезть в «начинку»
    электрощита. Думаю напоминать здесь о технике безопасности не стоит: ее никто не отменял. На самом
    деле способ достаточно прост: нужно найти нулевой проводник, уходящий в помещение и отсоединить
    его от клемм щита. Затем прозвонить с исследуемыми контактами: с которым будет звониться — тот и есть
    нулевой проводник.

    В случае с щитом вполне может возникнуть сложность, когда даже в щите сложно отличить ноль от заземления.
    В этом случае понадобятся токовые клещи. Нужно включить напряжение и нагрузку в помещении, и
    исследовать клещами неизвестные проводники в щите — где будет ток, так и рабочий ноль

    Обратите внимание:
    метод работает только в том случае, когда вы точно знаете, что один из проводников — ноль, а другой —
    земля.

    Все вышеописанные методы работают как с заземлением, так и с «занулением»

    Определить контакты при подключении электроплиты. Иногда возникает необходимость заменить розетку
    электроплиты, а проводка советских времен или начала 90-х, одноцветная. Для верного определения зануления
    электроплиты необходимо условие — двухполюсный автомат во вводном щите, отключающий и фазу, и ноль от всей
    квартиры.

    Итак, при включенной электроэнергии определяем фазу на ичсследуемых выводах для будущей розетки — этот контакт
    помечаем и откидываем в сторону, далее он нам не нужен. Потом нужно определить ноль в любой розетке в квартире —
    так как проводка советская, земли там нет, поэтому нолем окажется тот вывод, на котором не светится
    отвертка-индикатор.

    Теперь обесточиваем всю квартиру и мультиметром прозваниваем ноль обычной розетки с двумя оставшимися контактами
    на электроплиту. Тот контакт, который звонится с нолем розетки — рабочий, а тот что не звонится — зануление (земля).
    Если же звонятся оба контакта — нужно искать ошибки в электропроводке. При организации зануления в советское время,
    его присоединяли к клемме «PEN» без каких-либо коммутационных аппаратов.

    Разберем ситуацию со схемами

    С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.

    Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата. Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор. По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.

    Представим ситуацию, когда нулевой провод по какой-то причине разорван:

    • потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
    • механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
    • несанкционированное вмешательство доморощенного «электрика»;
    • авария на подстанции (возможно отключение только нулевой шины).
    Читайте также:
    Сколько весит красный кирпич для печи

    На схеме это выглядит следующим образом:

    При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной. Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию. При этом утечки тока на физическую землю нет, и защитный автомат не сработает.

    Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.

    А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена. Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба — это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе. Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.

    Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.

    Для справки: Обычно используется цветовая маркировка проводов:

    1. Фаза — коричневого или белого цвета.
    2. Рабочий ноль — синего цвета.
    3. Защитное заземление — желто-зеленая оболочка.

    Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.

    Напряжение между нулем и землей

    Наткнулся на статью, может кому будет полезна

    Лига электриков

    3.2K поста 20.1K подписчика

    Правила сообщества

    Запрещён оффтоп, нарушение основных правил пикабу

    Они соединение между собой . Какая нахрен между ними разность потенциалов. Уже и электрики для статьи высосанной из пальца начинают делать постановочные фотографии.

    Вот мне интересно, а выдержки из этой статьи нельзя было привести здесь и в виде поста оформить? А к посту уже и полную ссылку прикрутить.

    Я понимаю что национальный праздник сегодня, но всё же.

    Мне стало интересно, как появляется разность потенциалов на двух шинах, имеющих перемычку между собой? (см. внизу – нулевая и земляная шины соединены перемычкой)

    На картинке какая-то хрень:

    Между шинами N и РЕ стоит ЖЗ перемычка, а тестер 111в показывает. Если все нормально зачищено и протянуто, то так не бывает.

    Это что , удивительно? Если они не связаны между собой проводом то это просто закон ома. Но если верить картинке то странная хрень . Между этими колодками перемычка и существенной разности потенциалов быть не должно. Хрень короче какая-то.

    “Важно! Место разделения [PEN на PE и N] необходимо дополнительно присоединять к контуру заземления здания, после чего соединение проводов не допускается”

    Хотите наблюдать разогрев и оплавление спуска от ВЛ к дому? ))) – Тогда следуйте этому совету, и при отгорании нуля уравнивающий ток всего посёлка потечёт через ваш кабель.

    Вторичное заземление PEN должно выполняться на опорах ВЛ и за него должна отвечать энергосбытовая компания.

    Если между N (PEN) и E есть напряжение более 8 Вольт, то заявленная в договоре энергоснабжения система TN (без разницы TN-C, TN-S или ТN-C-S) неисправна.

    Надо писать заявку на ремонт в обслуживающую контору и претензию в энергосбытовую.

    Пусть ремонтируют и представят протоколы измерений сопротивления петель Фаза-Ноль, Фаза-Земля, сопротивления заземления и сопротивления вашего заземлителя (если таковой имеется вообще).

    Не могут обеспечить? – Пусть переписывают договор на систему ТТ.

    А потом эти люди выдумывают, что у них дифавтоматы “сами по себе” отрубаются…

    Если между землей и нулем есть разность потенциалов, нужно поймать электрика, который это сделал, выебать его хорошенько и заставить все исправлять!

    P.S. А я смотрю, сайт по ссылке таки заддосили! ☺

    Эээм. У нас щит домашний не примут если зануление не сделано в нем и. Нет своего контура под щитом.

    Ну можно сделать бесплатное освещение и дисковый счетчик в обратку запустить

    Когда платишь за 220 а остальное бонусом

    Сфоткал только что. Уже висит минут 5 как минимум. Колеблется от 280 до 293.
    И такое не в первый раз.
    Плохо разве? Хорошо!

    Реле контроля напряжения и тока барьер-люкс

    Три года назад установил в домашний электрощит реле контроля напряжения и тока.

    Устройство безусловно полезное, но .

    Месяц назад заметил, что реле пишет странную ошибку.

    И почему то как будто на паузе, хотя потребитель не отсоединен.

    По производителю БАРЬЕР ничего путного не нашел, кантора то ли украинская то ли питерская, инструкций не нашел, разве что нашел почти полный аналог ADECS ADC-0111-40.

    При нажатии на кнопку ПУСК-СТОП отсчет времени есть, а отключения нет. тааак – разбираем устройство и видим начинку.

    Плату с клеммами подключения, реле, искрогасящий конденсатор, шунт с датчиком тока.

    Это низковольтная часть, модуль управления, питается от 220 вольт, с понижением через резистор и конденсатор до 12 вольт.

    60-ти амперное поляризованное реле на 12 вольт.

    Высоковольная часть на плате, виден диодный мост, несколько транзисторных ключей, диоды, стабилитроны и резисторы с конденсаторами.

    Датчик Холла или датчик тока “спрятался” внутри витка толстого провода “фазы”.

    Место где подключалась нейтрать N – текстолит грелся и пожелтел.

    “вот таким тонким проводником подключена нейтраль” – подумал я, а потом понял, что это своего рода “плавкий предохранитель”.

    Хотя в схожем приборе, клеммы соединены с платой достаточно добротными канатиками.

    Еще немного высоковольтной части.

    Схема, почти точно повторяющая мою.

    Первым делом решил проверить работу поляризованного реле, поигрался с ним, меняя полярность замыкал и размыкал контакты – реле исправно!

    Затем прозвонил резисторы на целостность и соответствие номиналам.
    После проверил керамические конденсаторы на КЗ.

    Читайте также:
    Расширяем коридор

    Выпаял с платы X2 конденсатор на 1 мКф, для замера его параметров, так как после кондера 220 вольт не шло на диодный мост.

    Подробно про Х и Y конденсаторы описано в статье.

    Мне стало интересно, что же могло случиться с конденсатором, и я его “разобрал”.

    Кусачками – получилось правда не очень.

    Из-за постоянной работы под напряжением, емкость конденсатора упала ниже положенной и стала 0.2 мКф, что в 5 раз ниже заявленной.

    Виновник найден и был куплен в ближайшем магазине за 85 рублей.

    После установки на плату, прибор снова в работе.

    Установил в щитовую и включил все потребители в квартире – 29 ампер.

    Ремонтируйте вещи самостоятельно, учитесь новому.

    Спасибо за внимание!

    Закон Ома и закон Джоуля-Ленца для чайников: почему может меняться фактическая мощность одного и того же электронагревательного прибора

    Это объявленная ранее публикация о том, как благодаря закону Ома и закону Джоуля-Ленца один и тот же водонагреватель может как заработать, так и не заработать через автоматический выключатель одного и того же номинала, а один и тот же чайник может нагревать воду с разной скоростью.

    Читатель мог подумоть, что физика в объеме школьной программе никогда не понадобится в обычной жизни, но вот прямо сейчас она как понадобится.

    Простой бытовой сюжет начинается с мыслей о ежегодном плановом отключении горячей воды и поиска проточного водонагревателя, который можно включать в «обычную» розетку на 16 ампер. Рынок предлагает несколько моделей с заявленной мощностью в 3500 ватт. В описании так и указано: «мощность 3500 ватт». Делим 3500 ватт на 220 вольт – получаем силу тока 15.91 ампера, как раз немного меньше, чем 16 ампер.

    Именно поэтому мощность не 3400 и не 3600 – выбрано максимальное «круглое» значение мощности, которое должно безопасно получаться из обычной розетки на 16 ампер. Это в теории, а на практике.

    . читаем отзывы на одну и ту же модель водонагревателя. Одни покупатели пишут, что водонагреватель работает через автоматический выключатель на 16 ампер, другие – что такой выключатель стабильно отключается через несколько минут работы водонагревателя. Одни покупатели пишут, что работает без нареканий, другие – что проводка становится теплой.

    Это ЖЖЖЖЖ явно неспроста. Неправильные пчелы? Нет, это проявление закона Ома и закона Джоуля-Ленца.

    В описании водонагревателя рядом с текстом «мощность 3500 ватт» также написано «напряжение 220 вольт». Читать нужно так: «мощность составляет 3500 ватт при напряжении питания 220 вольт».

    Фактическое значение сетевого напряжения может отличаться от номинального по целому ряду причин. В зависимости от состояния электросетей и настройки трансформаторов на подстанциях напряжение может постоянно быть немного ниже или немного выше номинального. Помимо этого фактическое напряжение может меняться в течение суток из-за колебаний потребления электроэнергии.

    Это нормально, пока отклонение от номинала остается в пределах, установленных нормативами. Бывает еще, что напряжение отличается от номинального в нарушение требований нормативов – читатель наверняка слышал истории о даче, где электросети изношены или перегружены и чайник еле-еле греет, а стиральная машина не включается и надежно работает только зарядное устройство с диапазоном входных напряжений 100–240 вольт.

    Все производители электроприборов, которые не хотят разориться на замене сломавшихся электроприборов и компенсации вреда от их возгораний, делают электроприборы так, чтобы они безопасно работали в широком диапазоне допустимых по нормативам напряжений. Безопасная работа – хорошо, но при изменении напряжения может меняться сила тока через электронагревательный прибор и в результате будет изменяться его фактическая мощность.

    Пришло время вспомнить закон Ома.

    Закон Ома для участка цепи записывается обычно вот так:

    I – сила тока в участке цепи, U – напряжение на его границах, R – электрическое сопротивление участка.

    Из этого соотношения прямо следует, что при неизменном электрическом сопротивлении и возрастании напряжения сила тока возрастает линейно. Напряжение возрастает на 10 процентов – сила тока тоже возрастает на 10 процентов. При убывании напряжения сила тока линейно убывает.

    При протекании электрического тока через участок цепи в нем выделяется тепло, это так называемое тепловое действие электрического тока. Мощность выделяемого тепла определяется так (следствие закона Джоуля-Ленца):

    P – мощность выделяемого тепла, I – сила тока, R – сопротивление.

    Из этого соотношения следует, что при неизменном электрическом сопротивлении и возрастании силы тока мощность тепла возрастает квадратично. Сила тока возрастает на 10 процентов – мощность выделяемого тепла возрастает на 21 процент (1.10 × 1.10 = 1.21).

    Поэтому при неизменном электрическом сопротивлении и возрастании напряжения мощность выделяемого тепла возрастает квадратично. Это следствие двух указанных выше соотношений. Напряжение возрастает на 10 процентов – сила тока также возрастает на 10 процентов и мощность выделяемого тепла возрастает на 21 процент.

    Это не бесполезная теория. Производители бытовой техники, которые собираются продавать технику в как можно большее число государств, учитывают, что входное напряжение может немного отличаться, и в описании чайника указывают например следующее: «220–240 вольт 2000–2400 ватт». Верхнее значение диапазона напряжения на 9 процентов выше нижнего, а верхнее значение диапазона мощности на 19% выше нижнего – мощность выделяемого тепла квадратично растет с ростом напряжения. Это следствие закона Ома и закона Джоуля-Ленца.

    Да, один и тот же чайник может потреблять разную мощность в зависимости от фактического напряжения в электросети. Сила тока через нагревательный элемент чайника также может изменяться в зависимости от напряжения. Скорость нагревания одного и того же объема воды на одну и ту же разность температур будет разной в зависимости от напряжения в электросети. Это следствие закона Ома и закона Джоуля-Ленца.

    И то же самое с водонагревателями. «мощность 3500 ватт напряжение 220 вольт». А фактическое напряжение не 220, а 230 вольт – это допустимо по действующим в России в 2021 году нормативам. Фактическое напряжение выше указанного на табличке водонагревателя на 4.55 процента. Сила тока будет выше также на 4.55 процента – не 15.91 ампера, а 16.63 ампера. Мощность составит 3825 ватт.

    При фактическом напряжении 235 вольт (на 6.8 процента выше указанного на табличке) сила тока будет 17 ампер, а мощность – 3993 ватта.

    Надо бы подумоть о таком неудобстве: повышение силы тока приведет к увеличению нагрева проводов, их соединений и розетки. Розетка-то как была на 16 ампер, так и осталась, и провода все те же и скрутки и клеммники никуда не делись. Но пока не будем обращать на это внимание, пока попробуем оценить.

    Читайте также:
    Отопительные камины-печи (46 фото): печь для отопления с варочной панелью и лежанкой длительного горения для дома

    . сколько времени потребуется автоматическому выключателю, чтобы сработать при таких превышениях силы тока выше номинала? Здесь придется выйти за пределы школьной программы по физике.

    Ответ на этот вопрос дает так называемая время-токовая характеристика автоматического выключателя. Она показывает, сколько времени требуется для срабатывания автоматического выключателя в зависимости от того, насколько фактическая сила тока превышает номинал выключателя. Время срабатывания разное при разной температуре воздуха – если автоматический выключатель хуже охлаждается, он при той же силе тока быстрее прогреется и сработает раньше. Это не знакомый электрик – сын маминой подруги – сказал, это написано.

    . в увлекательном документе ГОСТ Р 50345-2010 (является действующим на 2021 год).

    Неисправимо оптимистичные читатели могут написать в комментариях о пункте 3.5.15 этого стандарта («условный ток нерасцепления») и заявить, что автоматический выключатель обязан не отключаться в течение не менее часа, если фактическая сила тока не превышает номинал выключателя более чем на 13%. В случае выключателя на 16 ампер речь идет о токе силой чуть больше 18 ампер. Вроде бы есть простор (на возможный перегрев проводов, соединений и розетки все еще не обращаем внимания).

    Но помимо пункта об «условном токе нерасцепления» есть и другие интересные и важные. Например, в 8.6.1. рассказывают о «нормальной время-токовой характеристике» – она задается для «температуры окружающего воздуха» 30 градусов.

    «Температура окружающего воздуха» – это не температура воздуха в помещении, а температура воздуха вокруг выключателя внутри электрощита. Внутри того же самого щита метры проводов, клеммники, другие выключатели, и все они могут нагреваться, вместе сильно прогревая воздух вокруг выключателя (а заодно и собственную изоляцию).

    Время срабатывания выключателя, через который включен водонагреватель, будет зависеть и от фактической величины сетевого напряжения, и от охлаждения воздуха внутри электрощита, в котором находится выключатель, и от выделения тепла всем остальным содержимым того же электрощита. Здорово, правда?

    Кстати, при увеличении силы тока на 13% его тепловое действие увеличивается. да, на 27.7 процентов. Это дополнительный нагрев всей цепи, в которой протекает избыточный ток. Это нагрев проводов, соединений, розеток. Здорово, правда? Именно о таком испытании своих электрических цепей, которые далеко не всегда сделаны с требуемыми по нормативам запасами, мечтает каждый покупатель бытовых приборов. Условный ток нерасцепления в нормальной время-токовой характеристике уже не выглядит таким привлекательным и теперь не только «решает» проблемы, но быть может и создает новые.

    Поэтому электронагревательный прибор с мощностью «на пределе возможного» – это интригующая неопределенность. Может заработать без нареканий, а может беспокоить покупателя перегревом проводов или вызывать срабатывание автоматических выключателей.

    Разгадывание таких ребусов – явно не то, к чему обычно готовится покупатель, выбирая бытовой электроприбор, который поставляется с сетевым проводом с вилкой для включения в «обычную» розетку. Он хотел просто помыться теплой водой. Такой наивный.

    А теперь. краткий пересказ написанного выше.

    1. Чем выше фактическое напряжение, тем большую фактическую мощность потребляет тот же электронагревательный прибор, тем выше сила тока через него и тем больше разогреваются все элементы электрической цепи, в которую он включен, – провода, вилка, розетка, автоматические выключатели и другое содержимое электрощита. Это следствие закона Ома и закона Джоуля-Ленца.

    2. Фактическое напряжение может быть разным в разных домах одного квартала, разных подъездах одного дома, разных квартирах одного подъезда и изменяться в течение суток. Это нормально, это случается повсюду, так устроены распределительные электрические сети.

    3. Чем выше температура воздуха вокруг автоматического выключателя и чем больше превышение фактической силы тока над номиналом автоматического выключателя, тем быстрее он срабатывает. Так устроены автоматические выключатели. ГОСТ Р 50345-2010 – увлекательный документ.

    4. Электронагревательные приборы с мощностью «на пределе возможного» – неоднозначное решение для бытовых приборов, которые покупатель привозит из магазина и включает в «обычную» розетку. Покупатель, который наивно надеялся помыться теплой водой, может застрять в разгадывании разнообразных ребусов.

    Между нулем и землёй 220 вольт .

    Дружище, фаза на нулевой провод может придти через потребитель твоих соседей в случае если где-то на опоре или в ТП плохой контакт на нулевом проводе или вообще контакт отсутствует. В этом случае если у тебя земля ( РЕ) взята с нуля то на РЕ тоже должно быть напряжение. Было бы более понятно если бы ты высал фотку своего вводного устройства.

    Благодарю за отклик!
    Ввод обычный. Фотку пока скинуть не могу. На работе.
    У меня 220 вольт между проводом ЗАЗЕМЛЕНИЯ и НУЛЕМ.
    Причем заземление как такового нет. Провод что называется “висит в воздухе” просто проложен, т.с.

    Думаю может через какой потребитель фаза с землёй контачит.

    ДА, что-то не так. При выключенном автомате, если это свой-тот самый-правильный, на распайке не должно быть напряжения. Ждем фото.

    Какое напряжение между N и L, у соседей?
    Может банальный обрыв нуля или кто то электроэнергию экономит. Аппаратура ни у кого не выгорала? Не в садовом кооперативе дело происходит?

    Доброго дня!
    Выкладываю фото. Правда вводной смазано получился.

    select, какое напряжение у сУсидий не уразумею. Допуска нет ))) Соответственно выгорало у них что-нибуть так же сообщить не могу. Нет не СНТ я в поселке живу. Частный сектор.

    Добрый день!
    !. Как Вы мерите между нулем и землей? Где? При выключенных отходящих автоматах? 2. На клемнике Нуль с землей разделены? Не видно на фото.
    С уважением Виктор Костров!

    Добрый!
    1. Мерю мультиметром. Ставлю на переменное напряжение. Один щуп на клемник с землёй, другой на клемник с нулем.
    2. Безусловно клемники разделены. Справа от автоматов (синяя коробочка) – это клемник нуля. А под автоматами соответственно “земля”.

    Попробуй поменять на вводном фазу-ноль

    Привет, какое напряжение на вводном автомате? И зачем тебе реверсивный рубильник? Возможно неправильно собрал схему. На фото не видно.

    СпецЭлектро, на вводном 237 В в среднем. Реверсивный для подключения генератора в перспективе. Электричество иногда в поселке заканчивается )))

    Еще раз, добрый день!
    Защитный проводник должен отходить от клеммы нулевого проводника наверху УЗО (деление РЕN проводника на нулевой и защитный до вводного коммутационного аппарата в системе ТN), или подсоединяться к ЗУ ЭУ в системе ТТ. То, что есть это ни то ни другое.
    Только тогда, когда Вы сделаете первое или второе можно будет искать неисправность.
    Сразу начнет выбивать УЗО. После чего Вы должны отключить все автоматы отходящих линий, включить УЗО и поочередно включить все автоматы, на включении какого автомата отключится УЗО там и ищите неисправность.
    Пока попробуйте данный вариант поиска.
    Следующий вариант поиска это поочередное отключение нулевых проводников с клемника, но думаю, до этого не дойдет.
    С уважением Виктор Костров!

    Читайте также:
    Особенности выравнивания деревянного пола при помощи самовыравнивающейся смеси

    На случай, когда заканчивается электричество, надо иметь хотя бы ведро – другое индукции в запасе , а серьезно реверсивник полезно на будущее.
    С уважением Виктор Костров!

    Т.е. уважаемый, простоПалыч, мне сначала нужно купить металлический уголок + полосу. Соорудить треугольник вбить его в землю. Подсоединить 16 мм2 ПВ 1. Завести в клемник. Попросту заземление сделать. А после этого устраивать “танец с саблями” .
    А где вёдра с индукцией можно приобрести? В Леруа не продают. Может у электровозной локомотивной бригады попросить? Благо ж.д. станция не далеко. Скорые и грузовые останавливаются периодически )))

    Виктор Палыч прав: Вам необходимо сделать контур заземления и подключить к нему Вашу шину, на которую подключены провода заземления вашей электропроводки. Поскольку у Вас нет заземления, возможно из-за этого и бьет Вас током. Вообще этот вопрос уже обсуждался на форуме.

    ВоронВоронович, вы подумайте на такую тему – откуда на заземляющем проводнике фаза, если он никуда не подключен. Единственное, что мне приходит на ум и на чем начинающие электрики “попадаются” чаще всего, так это вместо желто-зеленого провода с двойного выключателя, берут желто-зеленый от питающего и вот вам а-ля КЗ. Ну и однозначно, КЗ при неподключенной земле быть не может, если все исправно, хотя некое напряжение при измерении мультиметром может быть из–за наводки, но как только происходит соединение с нулем, то короткого замыкания не происходит, поскольку ток наводки очень маленький. Следовательно, вскрывайте каждую коробку. Или делайте так. Отключайте все отходящие автоматы и замеряйте есть ли “контакт”, то есть, присутствует ли на заземлении фаза. Держите щупы на земле-нуле и по очереди включаете автоматы. Как только на “земле” появляется фаза – определяете провод и дальше вскрываете по очереди все коробки на этой линии и смотрите, где косяк.

    Посмотрите форум. Много тем. Найдете ответ!

    Виктор Александрович, добрый вечер!
    Почему то Вы выбираете более сложный путь – проще с верхнего контакта УЗО нулевого ( совмещенного рабочего с защитным РЕN) проводника привести проводник на колодку Вашего висящего в воздухе Защитного проводника РЕ, получив при этом систему ТN-С-S, а дальше все по пунктикам в вышесказанном.
    По угольникам и полосе с шиной другой вопрос, здесь может хватить и одного штыря, а может не хватить и 10.
    Вопрос пока не в ЗУ, просто отработайте систему TN-C-S без ЗУ ЭУ. Начните с простого, а дальше, при Вашем желании перейдем к сложному.
    С уважением Виктор Костров!

    Ноль бьет током. Потенциал на PEN проводнике

    Ноль бьет током — это значит, что PEN проводник, имеющий общую точку с нейтралью трансформатора и землей в определенных ситуациях может иметь потенциал, отличный от нуля.

    Самая распространенная причина, из-за которой ноль бьет током — это обрыв (отгорание) нейтрали трансформатора. В этом случае на уже не связанном с нейтралью и землей PEN проводнике в зависимости от неравномерной нагрузки появляется фазное напряжение.

    Также, отличный от нуля потенциал на нейтральном проводе имеется практически всегда при нормальном режиме работы. В пятипроводной системе электроснабжения напряжение между землей и нейтралью отсутствует только в точке соединения этих проводов. По мере удаления от этого места за счет сопротивления проводов разность потенциалов постепенно появляется и увеличивается. В данном обзоре будет подробно рассмотрено именно данная ситуация, когда ноль бьет током в штатном режиме работы системы электроснабжения.

    Видео обзор — ноль бьет током

    Ошибки при анализе нулевого потенциала PEN проводника

    Поражение электрическим током возникает при соприкосновении с электрической цепью, в которой присутствуют источники напряжения и/или источники тока, способные вызвать протекание тока по попавшей под напряжение части тела. Обычно чувствительным для человека является пропускание тока силой более 1 мА.

    Многие утверждают, что нейтральный проводник при нормальном режиме работы не бьет током. А в качестве объяснения используют следующие доводы:

    • Например, ток течет по пути наименьшего сопротивления.
    • Или якобы нейтраль соединена с землей с нулевым потенциалом и мы стоим на земле. Но все это поверхностно и неверно.

    На поверхности земли электрический потенциал равен 0 вольт. Но нужно понимать, что данный нулевой потенциал — это условность, своего рода точка отсчета, о которую спотыкаются многие электрики, пытаясь объяснить процессы протекания электрического тока. Учитывая, что в сеть почти всегда включена нагрузка, а распределить ее по фазам равномерно нереально, между нулевым (PEN) проводником и землей всегда есть разность потенциалов, создаваемая сопротивлением проводника и переходных контактов. Соответственно дотронувшись до нулевого проводника и стоя на земле, вы замкнете цепь, и через вас пройдет ток.

    Как распространяется ток в электрической цепи

    Начнем разбирать данный вопрос с анализа утверждения, что ток течет по пути наименьшего сопротивления. Это не верно, так как в замкнутой цепи он (а точнее — свободные электроны) распределяется везде, только его сила обратно пропорциональна сопротивлению (если речь идет о смешанном соединении). Другое дело, когда на определенном участке нет вообще сопротивления, тогда весь ток пойдет через него. Это можно показать на схеме, но в реальности на воздушных линиях с большой протяженностью такое невозможно. Для наглядности рассмотрим подключение нагрузки к источнику однофазного тока:

    К источнику питания подключена нагрузка (условно чайник) создающий сопротивление 30 Ом. Цепь замкнулась, и в ней образовался ток 7,3 Ампер. Прикоснувшись к нулевому проводу и стоя на земле, мы создали дополнительную цепь через тело, землю и заземлитель к источнику питания. На данном этапе уместно вспомнить землю с ее нулевым потенциалом. В данном случае она выступает просто как проводник, соединенный с нулевым выводом источника питания. Поэтому можно перестроить схему, заменив землю обычным проводником:

    Читайте также:
    Снимаем лишнюю штукатурку правилом

    Как в первой, так и во второй схеме через участок человек — заземление — источник питания не проходит ток. Не удивительно, ведь на пути два резистора с сопротивлением 4 и 1000 Ом. Так почему же неверна трактовка движения по пути наименьшего сопротивления. Весь секрет кроется в проводах, которые имеют свое сопротивление. Электрическое сопротивление жилы самонесущего изолированного провода (СИП) сечением 25 мм² равно 1,380 Ом/км. К примеру, возьмем длину 250 метров. Тогда сопротивление провода в конце линии будет приблизительно 0,345 Ом. Добавим это сопротивление в нашу схему:

    Теперь ток 2,5 мА пошел через человека. Произошло пропорциональное перераспределение тока в цепи. И земля здесь никак не спасает, а наоборот усугубляет. Ведь если бы не был заземлен вывод источника однофазного тока, то никакой разности потенциалов с землей и не было бы.

    Для того чтобы понять, почему в цепи человек-земля (проводник)-заземлитель-источник питания появился ток и рассчитать его величину, нужно воспользоваться правилами последовательного, параллельного и смешанного соединения резисторов. Мы этого не будем делать, так как программа Electronics Workbench все посчитала за нас. Лучше простыми словами пройдемся по схеме и разберемся с потенциалами:

    Оранжевый участок от источника питания до нагрузки имеет потенциал 217,5 Вольт. Это значение равно напряжению на входе в резистор с сопротивлением 30 Ом. Участок цепи, отмеченный желтым имеет потенциал 2,5 Вольта, что равно падению напряжения за счет резистора 30 Ом. Как и упоминалось выше, без сопротивления провода 0,345 Ом никакого потенциала на нулевом проводе бы не было. Данный резистор создал в цепи сопротивление, которое позволило распределиться току по двум участкам с силами обратно пропорциональными сопротивлениям этих участков:

    • Участок между человеком и заземлителем источника питания — это зона растекания (локальная земля).
    • Участок схемы, помеченный голубым цветом, имеет нулевой потенциал.

    Мы рассмотрели подключение нагрузки к источнику однофазного тока с заземленным выводом. Как видно, при включенной нагрузке за счет сопротивления проводов всегда будет разность потенциалов между нулем и землей. И эта разность будет тем больше, чем больше сопротивление проводов и мощность включенной нагрузки. Так, увеличив мощность нагрузки в три раза, сила тока, проходящая через человека, возросла с 2,5 до 7,4 мА. При таком значении фиксируются судороги и болевые ощущения в руках.

    Ноль бьет током в сетях трехфазного тока

    Теперь перейдем к рассмотрению разности потенциалов между нейтральным проводом и землей в сетях трехфазного тока. Здесь уже имеются свои особенности. Так, если нагрузки по всем фазам будут одинаковы и не будет смещения нейтрали, то на нейтральном проводе ток будет равен нулю. То есть при соединении в звезду фаз симметричного приемника нейтральный провод не оказывает влияния на работу цепи и может быть исключен.

    Отсутствие сопротивления в проводах и равномерное потребление в многоквартирном доме или на линии с одно-дух этажной застройкой — это что-то из области фантастики, поэтому нейтральный проводник необходим и его основная функция – это минимизация напряжение смещения нейтрали и искажений фазных напряжений приемников. Подробно на данных процессах останавливаться не будем, и рассмотрим их отдельной темой. А пока же перейдем к току в нейтральном проводе при несимметричном потреблении.

    Как и в случае с источником однофазного тока, при добавлении в схему сопротивления проводников помимо смещения нейтрали открывается путь для протекания тока через землю при прикосновении человека к рабочему нулевому или защитному проводнику.

    Кстати, во всех системах TN с зануленным электрооборудованием при нормальном режиме работы на проводящих корпусах есть потенциал. А для того, чтобы не было разности потенциалов и вас не било током при замыкании цепи через трубы и иные проводящие коммуникации выполняется система уравнивания потенциалов.

    Вернемся к теме и для наглядности рассмотрим схему:

    Как видно, с учетом неравномерной нагрузки (на схеме это резисторы 10, 30 и 50 Ом) и сопротивления проводов взятых условно 0,3 Ом потенциал на дальнем от распределительного трансформатора участке нейтрального провода 4,5 Вольта. Соответственно через человека с сопротивлением 1000 Ом, стоящего на земле и касающегося нейтрального провода, потечет ток с силой 4,5 мА.

    Если мы увеличим сопротивление проводов в два раза, то и проходящий через человека ток также возрастет почти в два раза (до 8,3 мА).

    Мы знаем, что система TN с глухозаземленной нейтралью должна иметь повторные заземления PEN проводника с общим сопротивлением заземлителей не больше 10 Ом. С добавлением этого повторного заземления большая часть тока уйдет через него, а ток, проходящий через человека снизится с 8,3 до 3,2 мА.

    Стоит отметить, что везде мы рассматривали сопротивление человека равное 1000 Ом. Но ведь нужно учитывать также сопротивление обуви, пола, грунта. И действительно, если вы будете стоять к примеру на сухом деревянном полу в обуви с хорошим сопротивлением, то вы скорее всего не почувствуете ничего, прикоснувшись к нейтральному проводу. И здесь условный нулевой потенциал земли никакой роли не играет. Вы всего лишь изолируетесь от проводимости земли. А если еще и выполнена система уравнивания потенциалов, то даже стоя босиком на влажном полу или дотронувшись второй рукой до трубы или батареи, разности потенциалов с нейтралью не будет. И если мы изменим сопротивление человека с 1000 до 5000 Ом, то проходящий через тело ток снизится с 3,2 до 0,6 мА.

    Как видно, утверждение, что нейтральный проводник не бьется током, в корне не верное. Разность потенциалов между ним и землей есть всегда. Зависит она от нагрузки, неравномерной нагрузки в сетях трехфазного тока, протяженности воздушной линии и сопротивления проводов. Поэтому, несмотря на то, что в большинстве случаев вы хорошо изолированы от земли либо имеется система уравнивания потенциалов, и вы можете не ощутить влияния малых токов при контакте с нейтральным проводом, никогда не прикасайтесь, не убедившись в отсутствии большого потенциала на нем. Чем больше сопротивление нейтрального провода вплоть до отгорания, тем больше разность его потенциала с потенциалом земли и тем больший ток по закону Ома потечет в этой цепи.

    regane

    Regane ибн Антон Васильев

    Электричество как показала практика, вовсе не такая сложная и опасная наука, как утверждают электрики. Все что нужно знать, умещается на 3-4 страницах формата А4. :)
    Мои комплексы не позволят мне написать меньше 10 :)

    Читайте также:
    Применение противопожарного УЗО для защиты проводки от возгорания

    Оно приходит к нам в дом по проводам.
    Количество их в зависимости от типа питания может быть разным – 2,3,4,5…

    Называются они так:

    • «Фаза» – основной провод, по которому к нам приходит электричество. Обычно изоляция этого провода имеет черный или белый цвет. Лучше проверять специальной отверткой-тестером, но не языком. Обозначается на схемах как L
    • «Ноль» – провод, на которое электричество уходит через нагрузку (Лампочки, пылесос и т.д.). Изоляция обычно синего цвета. Обычно на этом проводе нет напряжения, но бывает всякое и руками его лучше не хватать. Обозначается на схемах как N
    • «Защитная Земля, Земля» – защитный провод, на него сходит электричество во время всяких внештатных ситуаций. Провод обычно имеет зелено – желтый цвет изоляции. Обозначается на схемах как PE

    Электричество к нам в дом заходит либо в трехфазном, либо однофазном виде. Тут, как говорится, кому как повезло. Разумеется, трехфазные сети, как правило, обеспечивают возможность получения большей нагрузки.

    Однофазная сеть (2-х проводная) состоит из фазы и нуля. Реально такое подключение можно использовать только для маломощных приборов в изолированном пластмассовом корпусе и в не особо опасных помещениях (не в сортире, и не в ванной).

    3-х проводная состоит из фазы, нуля и земли. До недавнего времени такая проводка использовалась в домах с электроплитами и только для самих электроплит. Сейчас в новых домах используется только такая проводка.

    4 или 5 проводов используют для трехфазного питания.
    При 5и проводном подключении используются 3 фазных провода, 1 нулевой провод и 1 провод защитного заземления.
    При 4х проводном подключении используются 3 фазных провода и 1 нулевой провод, который затем делится на ноль и провод защитного заземления.

    Напряжение между любой фазой и нулем – 220В.
    Напряжение между двумя фазами – 380В. (Пипец как больно :)
    Напряжение между нулем и землей должно быть 0В.
    Браться за ноль голыми руками не рекомендуется, так как при неблагоприятном раскладе нагрузок по фазам может произойти смещение потенциала нуля и вы живенько откинетесь. :)

    Провод «Земля» используется только для защиты, к нему подключаются корпуса бытовых приборов.
    В вилке-розетке контакт земли должен соединяться первым, а размыкаться последним, поэтому он в вилке обычно выведен на самую длинную ножку.

    Самый тонкий вопрос в разводке электрике – это организация заземления. Мы все привыкли, что в розетках и вилках (однофазных сетей) у нас присутствуют 3 контакта: фаза, ноль и земля.
    Очень хорошо, когда приходят все эти три провода (при однофазном подключении), либо 5 проводов при трехфазном (3 провода – 3 фазы, ноль и земля). Сложнее, когда у нас есть 2 провода при однофазном или 4 провода при трехфазном подключении (т.е. вместе с фазой(-ми) идет только нулевой провод).

    Если говорим про загородный дом, то по идее, вы должны у себя на участке вырыть глубокую яму (до глубины постоянного залегания грунтовых вод) заложить туда что-то металлическое и массивное и соединить этот предмет с контактом заземления в ваших розетках. К сожалению, это трудно реализуемое, однако нужное дело. Дело не только в неприятных земляных работах, а в том, что это заземление должно обеспечивать очень малое сопротивление, а поливать каждый день из леечки зарытую бочку вам вряд ли понравится :) За городом обычно заземление делают из вбитых на приличную глубину массивных железных уголков длиной по 3 метра.

    Причем отдельное заземление для бытовой электросети и отдельное для молниеотвода. Это называется повторным (дополнительным) заземлением, потому как на трансформаторе (откуда на даче к дому приходят провода) нейтраль заземлена в обязательном порядке, с проверками и нормами.
    Повторное заземление в дополнение к имеющемуся не только разрешается, но и приветствуется, это дело полезное, но его надо делать хорошо.

    Заземление вообще очень полезная штука, не зря тут столько многобукав! Переходим к логическому продолжению темы защиты.

    Для защиты от короткого замыкания предназначены автоматические выключатели (среди простолюдинов – “автоматы”). Они срабатывают при достаточно существенных токах короткого замыкания.

    К сожалению для гибели/увечья человека достаточно гораздо меньших токов, чем ток короткого замыкания и поэтому наряду с автоматами применяются специальные приблуды – УЗО (Устройство защитного отключения)

    Если произойдет утечка тока (а это может произойти в любую секунду и по любой причине, например, пробегающий бузиль закоротил фазу и корпус собой), то ток с этих металлических частей уйдет по защитному заземлению, а УЗО вырубит фазовый и нулевой провод. Примерами являются холодильник, электроплита, стиральная машина. Если они не заземлены, можно ощущать покалывание электрическим током при прикосновении к нему.

    УЗО, по простому – это специальный прибор, который сравнивает приходящий ток по фазе и уходящий ток по нулю. Если разница (утечка тока) выше значения указанного порога на УЗО, то оно срабатывает и отключает и фазу, и рабочий ноль.
    В трехфазных УЗО сравнивает сумму токов фаз с нулем и имеет четыре провода.
    При наличии УЗО человека обычно не успевает поразить электрическим током.

    УЗО всякие нужны, УЗО всякие важны:

    • 10 мА бывают только на 1 фазу и 16А для особо опасных помещений типа сортира. :)
    • 30 мА – защита человека от прямого прикосновения. Эти УЗО защищают от локальных проблем (растаявший холодильник, пальцы в розетке).
    • 300 мА – человека почти не защищает, а только от утечек в изоляции, противопожарное. Ставится сразу после входного автомата. Оно будет срабатывать от серьезных глобальных проблем (нарушения изоляции, пробоя фазы на зануленный корпус).

    Как уже было сказано, УЗО срабатывает от утечки тока. Утечка может быть и фазы, и нуля.

    Поэтому при отключении УЗО причина ищется последовательным отключением приборов по одному. Если причина в нуле, то причину найти конечно тяжелее.
    Проверять УЗО нужно ежемесячно, нажимая кнопку ТЕСТ на нем.

    Стоит УЗО достаточно дорого. При правильных схемах обеспечить каждому автомату УЗО – недешевое удовольствие, поэтому при нехватке денег поставьте хотя бы щиток с запасом, общее УЗО и для ванной. Потом дополните, когда деньги появятся.

    Мощность (ток) УЗО подбирается одинаковой с мощностью автомата. УЗО всегда ставится после автомата, а не наоборот.

    Электрическая схема в квартире

    Сначала вспомним химию:

    Мощность это произведение напряжения на силу тока: Мощность(Вт) = 220(В) * Ток(А),
    соответственно Ток(А) = Мощность(Вт) / 220(В).

    Читайте также:
    Особенности выравнивания деревянного пола при помощи самовыравнивающейся смеси

    У каждой силы тока (указывается в Амперметрах:) есть соответствующая мощность:

    6А = 1.3 кВт
    10А = 2.2 кВт
    16А = 3.5 кВт
    25А = 5.5 кВт
    32А = 7 кВт
    40А = 8.8 кВт

    На розетках обычно указывается предельная сила тока. Обычно это 10 или 16А. Лучше 16А брать конечно.
    Розетки бывают с закреплением провода под болт и самозажимные клемники. Обычно в розетку под болт можно зажать провод до 4 кв.мм, но проще – 1.5 кв.мм. Самозажимные клеммники требуют жесткого (монолитного) провода с диаметром не выше указанного.
    Обязательно ставьте розетки в подрозетники, их лучше покупать глубокие – в них больше провода можно оставить для удобства монтажа.
    Стоят мало, около 5 руб.
    Удобно подрозеточники заделывать с помощью гипса, алебастра или ротбанда.

    В квартирах используются провода разного сечения, нужно подбирать под нужные цели:

    • 1.5 кв. мм медный провод = 16А, 3.5 кВт
    • 2.5 кв. мм медный провод = 25А, 5.5 кВт
    • 4 кв. мм медный провод = 32А, 7 кВт
    • 6 кв. мм медный провод = 40А, 8.8 кВт

    Лучше конечно брать медные провода, медь лучше алюминия и вот почему:

    • из-за лучшей электропроводности. То есть при одном и том же сечении вы через медь протащите тока в 1.5 больше. А при одинаковом токе это меньшее сопротивление, меньший нагрев.
    • медь более стойкая ко всяким изгибам.
    • медь является более стойкой к агрессивной среде, более долговечной.

    Соединять алюминиевый и медный провода скруткой нельзя, только через клеммники (алюминий-алюминий и медь-медь можно).

    Если несколько проводов собраны вместе, то это называется кабЕль. Если несколько кабелей собраны вместе это называется собачья свадьба :)

    Наиболее используемые марки кабелей и проводов, место их использование:

    1. Одиночные провода (ими круто плести всякую шнягу и соединять розетки между собой) – ПВ1 (жесткий), ПВ3 (гибкий).
    2. Разводочный кабель (С таким кабелем не заскучаешь:)- ПУНП, ПБПП.
    3. Магистральный кабель (жесткие многопроводные разводки)- ВВГ, NYM (нюм кста содержит дополнительный слой негорючей изоляции)
    4. Гибкий кабель в пластике (удлинители и шнуры для внутренней не очень жесткой эксплуатации) – ПВС.
    5. Гибкий кабель в резине (бетономешалку по стройке таскать и трактором при этом по кабелю ездить) – КГ.
    6. Управление (сразу очень много жил, например вентиляцию включать или какие-нибудь ворота)- КВВГ (бывает что-то типа до 35 жил, обычно 10-20).

    Каждый автомат рассчитан на какой-то ток.
    Этим он защищает цепь (группу) от перегрузки. Если протекает более большой ток (перегрузка по току) или короткое замыкание (КЗ), то срабатывает тепловое реле и обесточивает фазу.
    При перегрузке тепловое реле автомата (с указанной на автомате установкой по току, типа 10А или 16А) нагревается и срабатывает. Время срабатывания зависит от перегрузки и может достигать нескольких минут.
    Если случается КЗ, то срабатывает быстрое электромагнитное отключение.
    Это основная защита от пожаров, когда потребители стараются вытащить из розетки ток, превышающий параметры розетки или провода. Существуют автоматы на 6.3А, 10А, 16А, 25А, 40А, 63А. Ток написан на панели автомата.

    Ток автомата должен быть меньше или равен и току провода, и току розетки.
    Только в этом случае работает защита автомата.
    Например, на 16А автомат вы включите электрочайник (8А) и СВЧ (8А). Автомат выключаться не будет. Но, если вы добавите еще чего-нибудь на 8А (итого будет 24А), то, автомат сработает и защитит цепь. Повторю, что провода и розетки не защищают от перегрузки. Они только служат как соединители. Наоборот, автомат защищает их.

    Пример 1. 10А розетка + 10А провод + 10А автомат = хорошо.
    Пример 2. 16А розетка + 16А провод + 10А автомат = хорошо.
    Пример 3. 16А розетка + 10А провод + 16А автомат = плохо (перегорит провод)
    Пример 4. 10А розетка + 25А провод + 16А автомат = плохо (сгорит розетка)

    Во время проектирования схемы проводки желательно делать один автомат на одну комнату. Во-первых, будет отдельный рукав до комнаты через который можно будет протащить кабель в случае обрыва (минимизация стоимости и сроков строительных работ). Во-вторых, понятная, а отсюда безопасная, схема отключения, если что-нибудь надо сделать с розеткой.

    Разводка проводов по квартире

    Лучше всего протащить кабель от автомата до распределительной коробки (или первой розетки) в комнате в отдельной трубе (рукаву). Трубы бывают металлические и пластиковые, гофрированные и жесткие (не гофрированные). Имеют ряд по внешнему диаметру 16, 20, 25, 32, 40 мм. Внутренний диаметр меньше

    25%. Для жестких труб имеются уголки, тройники, муфты, сальники (в принципе и для гофрированных тоже) герметические (дороже) и н егерметичные.
    Прокладывать трубу как можно прямее, изгибы делать плавными. Тогда в последствии можно будет переложить кабель.

    От щитка можно использовать более толстый (магистральный) кабель, если кабель приходит с начала в распределительную коробку, а не сразу на розетку. Кабель 3*1.5 кв.мм имеет диаметр до 10мм, 3*2.5 кв.мм – до 11 мм. Разница между внутренним диаметра трубы и диаметром кабеля должна быть не менее 3мм.
    Если все нормально, то толкаешь кабель и он лезет. Можно использовать проволоку за которую можно цеплять кабеля.
    Если кабель пролезает совсем туго, можно смазать его вазелином и дело пойдет веселее! В принципе можно 2 кабеля протащить в одном рукаве, но не очень удобно (проще две гофры протянуть).

    Если квартира имеет легкие для штробления (например, кирпичные) стены имеет смысл делать разводку по стенам, так как штробление полов обычно более трудо- и денежноемко впоследствии. Обязательно сделайте рисунок с точными размерами.
    Штробы удобнее всего делать штроборезом, это такая фигня с двумя (алмазными) дисками на колесиках, едет по стене и оставляет два пропила на заданном расстоянии. Потом перемычка выламывается (перфоратором со штробалкой).

    Обязательно нужно оставить для себя план разводки. Штробление нужно делать только по вертикали и горизонтали. От кабельного рукава до горючего материала должно быть не менее 10 мм. Если многожильный провод, то надо использовать наконечники.

    Не надо делать разводку под ванной и туалетом.
    Не прокладывайте там, где повышенная температура. Не прокладывайте около батареи, так как тут и тепло, и вода.
    Не прокладывайте трассу прямо под межкомнатной дверью, так как в последствии вы можете крепить порожек.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: