Описание и способы применения полиэтилена

Виды и свойства полиэтилена

Полиэтиленовые пакеты знают все. В них упаковывают конфеты, фрукты, рыбу, бытовые товары. Но мало кто задумывается о том, из чего их получают. Познакомимся с пакетами поближе.

  • Характеристика полиэтилена
  • Свойства полиэтилена
    • Полиэтилен высокого давления
    • Полиэтилен низкого давления
  • Виды полиэтилена
  • Получение полиэтилена
    • Полиэтилен высокого давления
    • Полиэтилен низкого давления
  • Применение полиэтилен
  • Экология и вторичное использование

Характеристика полиэтилена

Полиэтилен – полимер этилена. Органическое соединение, имеющее формулу:—CH2—CH2—CH2—CH2—. Связь между атомами углерода – ковалентная.

Свойства полиэтилена

Полиэтилен представляет собой массу белого цвета. Тонкие листы полиэтилена бесцветные или прозрачные.

Обладает следующими свойствами:

  • Не проводит электрический ток.
  • Не подвергается изменению формы при ударе – амортизирует.
  • Размягчается при нагревании свыше 800С.
  • Имеет низкую адгезию.
  • Не реагирует с водой, она просто с него стекает.
  • Не вступает в химическую реакцию со щелочами, кислотами, солями.
  • Подвергается химическому разрушению – 50% азотной кислотой, а также галогенами – хлором и фтором.

Но данный минус может быть переведен в плюс: возможно использование данной реакции для утилизации полимера, получения новых соединений.

Мономер этилен подвергают полимеризации двумя способами, в зависимости от способа получения выделяют полиэтилен высокого (ПЭВД) и низкого (ПЭНД) давления.

  • ПВД – полиэтилен низкой плотности.
  • ПНД – полиэтилен высокой плотности.

Также среди собратьев выделяют класс линейного полиэтилена.

Полиэтилен высокого давления

Молекулярный вес 80000-500000. Полученный материал легкий, теплостойкий, переносит охлаждение до -1200С.

Свойства находятся в зависимости от плотности. Чем выше плотность, тем выше прочность, жесткость, твердость, стойкость к действию химических реагентов.

Полиэтилен низкого давления

  • Теплостойкость до 1100С.
  • Переносимое охлаждение до – 800С.
  • Имеет глянцевую, блестящую поверхность.
  • Характеризуется ударопрочностью, высокими диэлектрическими показателями.

Свойства также определяются плотностью. Повышение прочности приводит к увеличению жесткости, химической стойкостью, но при этом уменьшается ударопрочность при низких температурах, проницаемость для газов. Материал инертен к биопоражению. Но с легкостью подвергается переработке.

Виды полиэтилена

Полиэтилен нашел широкое применение у потребителей. Растущий к материалу интерес был двигателем науки, создавались все новые и новые материалы, обладающие новыми свойствами. В настоящее время можно выделить четыре основные группы полиэтилена. Способ получения, определяет свойства, которыми награжден материал, ну а свойства, определяют область использования.

Четыре основных вида полиэтилена:

  1. Линейный полиэтилен высокого давления, обозначающийся аббревиатурой ЛПВД.
  2. Полиэтилен высокого давления, обозначающийся аббревиатурой ПВД.
  3. Полиэтилен среднего давления, обозначающийся аббревиатурой ПСД.
  4. Полиэтилен низкого давления, обозначающийся аббревиатурой ПНД.

Следует отметить, что полиэтилен среднего и низкого давления, это достаточно условное разделение, так как получаемый материал имеет одинаковую плотность и молекулярную массу, и схожие условия синтеза.

Существует дополнительная классификация полиэтилена, так сказать более специфическая. Данные материалы применяют для строительных, медицинских нужд.

  • Сшитый полиэтилен, имеющий обозначение РЕХ.
  • Вспененный полиэтилен, имеющий обозначение ПП.
  • Свервысокмолекулярный полиэтилен, имеющий обозначение СВМП.
  • Хлорсульфированный полиэтилен, имеющий обозначение ХСП.

Получение полиэтилена

Основным сырьем для получения служит чистый этилен. Определены две основные химические технологии получения полиэтилена:

  • радикальная полимеризация, которая протекает в газовой фазе;
  • координационно-ионая полимеризация, которая осуществляется в жидкой среде бензина.

По данным технологиям получают два вида материала:

  • первое — это полиэтилен высокого давления;
  • второе – это полиэтилен низкого давления.

Полиэтилен высокого давления

Синтезируется при давлении 150-300 МПа, температуре 200-2600С, в присутствии кислородсодержащего катализатора – кислород, перекись водорода.

Технология получения протекает через образование промежуточного соединения с последующим его распадом.

Радикалы, которые образуются, являются основоположниками полимеризации мономера.

nСН2 =” СН2 (-СН2-СН2-)n.

Технологию получения можно представить следующими стадиями:

  • Смешение исходного сырья с возвратным газом и «товарищем» кислородом.
  • Сжатие газовой смеси, протекающее в две стадии.
  • Этап полимеризации исходного сырья.
  • Разделения продукта и непрореагировавшего сырья.
  • Перевод жидкого продукта в гранулы.

Полиэтилен низкого давления

Название говорит само за себя. В технологии получения используют низкое давление. Исходным сырьем является также мономер – этилен.

По способу получения разделяют:

  • Полимеризацию, протекающую в суспензии.
  • Полимеризацию, протекающую в растворе, чаще всего жидкой средой служит гексан.
  • Полимеризация в газовой среде.

Реакции, протекающие в жидкой фазе, нашли более широкое применение, нежели в газовой.

Читайте также:
Подушки из овечьей шерсти (21 фото): плюсы и минусы моделей из овцы, чем они полезны

Процесс в жидкой среде протекает при высокой температуре до 25000 С. При этом установленном давлении, находящемся в диапазон 3,4-5,3 МПа.

Контакт с катализатором недолгий и составляет всего 10-15 минут.

Из реакционной смеси продукт выделяют удалением растворителя. Этот процесс протекает в испарителе, затем смесь передается в сепаратор, а из него в вакуумную камеру, где происходит уже грануляция. Полученный твердый продукт пропаривают водяным паром.

Применение полиэтилен

Полиэтилен очень широко распространен в нашей жизни.

Полиэтиленовая пленка применяется для упаковки продуктов товаров, пузырчатая пленка используется в перевозке хрупких материалов. В сельском хозяйстве полипропиленовыми пленками укрывают парники, для повышения температуры внутри них и сохранении тепла – это повышает урожайность.

Из полиэтилена производят различную тару – это и бутылки, ящики, канистры под различные, в том числе агрессивные жидкости, опять-таки для сельского хозяйства производят лейки и горшки для выращивания рассады.

В строительной сфере из полиэтилена производят канализационные, дренажные трубы, трубы газового и водоснабжения.

Из полиэтиленного порошка изготавливают термоклей.

Что может показаться удивительным, но также полиэтилен идет на производство бронежилетов, корпусов судоходных плавательных средств, двигателей некоторой технической аппаратуры.

Вспененный полиэтилен применяется в качестве теплоизолятора.

А полиэтилен высокого давления идет на строительство накопителей твердых и жидких отходов, опасных для окружающего мира.

Сверхвысокомолекулярный полиэтилен – это индивидум, но он специфичен. Не имеет низкомолекулярных добавок, характеризуется высокой линейностью, большой молекулярной массой. Применяется в медицинской области для замены хрящевой ткани суставов. Сфера применения, несмотря на выгодно отличающие его свойства, не очень велика. Так как этот полимер плохо поддается переработке.

Экология и вторичное использование

Удобство использования полиэтилена омрачено сложностью утилизации. Поэтому во многих странах уже ввели ограничение на выпуск, продажу и применение полиэтиленовых пакетов.

Переработка материала проводится известными для пластика способами: литье под давлением, экструзией.

Также возможно проводить сжигание, но при этом в атмосферу выделается огромное количество продуктов горения.

Новая жизнь полиэтилену дается следующим способом: исходный мусор отмывают, измельчают, отделяют от влаги и мусора в центрифуге, вновь промывают, отправляют в сушильную камеру – на выходе получают вторичное сырье, которое пригодно для нового использования. Так методом экструдирования из него производят трубы, второсортную пленку.

Стоит отметить, что природа пытается сама спасти себя от пагубного действия полиэтилена. Выведены плесневые грибы, которые способны за три месяца «слопать» полиэтилен, который был «приготовлен» для них – обработкой азотной кислотой.

Наша планета создала все условия, для проживания человека, мы должны пользоваться ее дарами с уважением и беречь природу. Разделить отходы по разным мусорным корзинам – это простое, но очень полезное действие, которое спасает нашу Землю и позволяет получать новые полезные материалы.

Что такое полиэтилен и где его используют?

Одним из наиболее распространённых в быту видов пластика является полиэтилен.

Современный человек встречает его буквально на каждом шагу: в него упаковывают продукты и непродуктовые товары, из него делают бутылки для воды и напитков, одноразовую посуду и множество других вещей.

Но что мы знаем о полиэтилене?

Что такое полиэтилен?

Как понятно из названия, полиэтилен – это полимер, т.е. вещество с длинной молекулой, образованной соединением ряда мономерных молекул. Мономеры могут соединяться в виде цепочек, сеток, образовывать формации неправильной формы. От того, при каких условиях происходит полимеризация, т.е. образование этих длинных молекул, зависят свойства получаемого полимера.

Основой для полиэтилена служит бесцветный газ этилен, который получают, перерабатывая определённые нефтепродукты – прямогонный бензин, газойль и др. Вещество, получаемое в ходе полимеризации, обладает хорошей термопластичностью, химической стойкостью, устойчивостью к ударным нагрузкам. Полиэтилен является диэлектриком, т.е. не проводит электроток.

Это твёрдое беловатое вещество, обладающее прозрачностью при раскатывании тонким слоем. Полиэтилен является одним из самых распространённых в мире полимеров.

Способы изготовления полиэтилена

В настоящее время существует три основных вида полиэтилена, которые различаются по способу переработки этилена:

— при высоком давлении получают полиэтилен небольшой плотности, который обозначается аббревиатурой ПВД либо ПЭНП;

Читайте также:
Основные особенности индукционных плит: принцип работы, правила пользования, рейтинг популярных производителей

— полученный при среднем давлении продукт обозначают как ПЭСД;

— при низком давлении образуется полиэтилен высокой плотности, который обозначают аббревиатурами ПНД либо ПЭНД.

Прочие способы полимеризации этилена не приобрели достаточной популярности, так как они либо чересчур затратны, либо не обеспечивают нужных качеств полимера.

Кроме того, существует ряд технологий для получения композитных составов и сополимеров. Полиэтилен объединяют с полипропиленом, каучуком, полиизобутиленом и др. В последние десятилетия активно используется так называемый сшитый полиэтилен, полимерная молекула которого обрзована мономерами, соединёнными не только в виде цепи, но и боковыми связями, напоминающими стежки нити.

Сшитый полиэтилен более прочен и долговечен, чем обычный. Его производят пероксидным, силановым, азотным и радиационным способами.

Использование полиэтилена

Сфер для применения столь полезного вещества, каким оказался полиэтилен, сегодня очень много. Его используют:

— в виде плёнок различной толщины, вида и назначения, предназначенных для упаковки, ламинации, склейки и т.д.;

— для изготовления тары и предметов обихода, от сельхозорудий и кухонных принадлежностей до детских игрушек;

— для производства труб различного назначения;

— в качестве электрической изоляции проводов и коммутационных элементов, для изготовления корпусов электроприборов и отдельных деталей;

— в качестве термоклея в виде порошка или стержней;

— в качестве теплоизолятора в виде вспененной массы, реализуемой листами или рулонами;

— для изготовления корпусов и деталей различных механизмов, от мелкой бытовой техники до тракторов и лодок;

— в медицине для изготовления инструментов, расходных материалов, заменителей хрящевой ткани и др.

Для потребителей наиболее важными свойствами являются водонепроницаемость полиэтилена, его химическая стойкость, пластичность, небольшой вес и достаточно высокая прочность. В последние десятилетия актуальность приобрела возможность повторного использования полиэтилена, благодаря чему экономятся невосполнимые природные ресурсы и не загрязняется окружающая среда.

Полиэтилен и экология

Повсеместное использование полиэтилена не только сделало нашу жизнь более удобной, но и привело к образованию огромного количества бытового и промышленного мусора, загрязняющего нашу планету. Срок естественного распада полиэтилена составляет около пятисот лет, поэтому надеяться на то, что этот мусор исчезнет сам собой, не приходится.

Сегодня в Тихом океане и в Атлантике плавают гигантские острова, образованные из полиэтиленовых бутылок, плёнки и других отходов. Проблема требует скорейшего решения, поскольку существование полиэтиленового мусора приводит к гибели живых существ, населяющих нашу планету, и ухудшению условий жизни для всех людей.

Полиэтилен

Что такое полиэтилен

Полиэтилен (ПЭ, PE) – один из самых первых из крупнотоннажных и самый распространенный полимерный материал. Не будет преувеличением сказать, что полиэтилен известен практически всем людям и само это понятие в быту является синонимом пластмассы, как таковой. Не специалисты часто называют полиэтиленом многие материалы, которые ничего общего с ним не имеют.

ПЭ является простейшим из полиолефинов, его химическая формула (–CH2–)n, где n – степень полимеризации. Основными разновидностями ПЭ являются полиэтилен низкого давления (ПЭНД, ПНД), он же полиэтилен высокой плотности (ПВП, PEHD, HDPE) и полиэтилен высокого давления (ПЭВД, ПВД), он же полиэтилен низкой плотности (ПНП, PELD, LDPE). Далее мы рассмотрим эти и другие виды ПЭ подробнее.

Полиэтилен – синтетический полимер, его получают при помощи полимеризации этилена (химическое название – этен) по свободно-радикальному механизму. Крупнотоннажный синтез ПЭВД и ПЭНД производится практически всеми ведущими мировыми нефтяными и газовыми концернами. В России полиэтилен производится на нефтехимических заводах «Роснефти», «Лукойла», «Газпрома», СИБУРа, на «Казаньоргсинтезе» и «Нижнекамскнефтехиме». В странах бывшего СССР полимер выпускают в Белоруссии, Узбекистане, Азербайджане. Серийные марки полиэтилена выпускают в виде гранул размером 2-5 мм, однако существуют и марки в виде порошка, например так выпускают в продажу сверхвысокомолекулярный полиэтилен (СВМПЭ).

Рис.1. Полимер в гранулах

Полиэтилену уже более 100 лет. Впервые его получил инженер из Германии Ганс фон Пехманн в 1899 году, с тех пор он считается изобретателем этого полимера. Но, как часто бывает, важное открытие сразу не нашло применения. Оно пришло только к концу 1920-х годов, а в 1930-е годы производство полиэтилена было окончательно налажено, в чем сыграли большую роль инженеры Эрик Фосет и Реджинальд Гибсон. Изначально они синтезировали низкомолекулярный парафиновый продукт, который можно назвать полиэтиленовым олигомером. В итоге большой работы, в 1936 году изыскания инженеров по разработке установки высокого давления закончились получением патента на ПЭНП (ПЭВД). В 1938 году производство товарного полиэтилена стартовало. Первоначально он предназначался для производства оболочек телефонных кабелей и несколько позже – для выпуска упаковки.

Читайте также:
Расстояние между столбами освещения: в городах и на трассах по ГОСТу и СНиП

Технологию производства полиэтилена высокой плотности (ПЭНД) начали разрабатывать также в 1920-х годах. Большую роль в производстве этого материала сыграл Карл Циглер – известный в среде пластмасс изобретатель катализаторов ионно-координационной полимеризации, самым важным из которых позже было присвоено имя Циглера-Натта. Окончательно процесс получения ПЭНД был полностью описан лишь в 1954 году и тогда же на нее был выдан патент. Промышленное производство нового полиэтилена с более высокими, чем ПЭВД свойствами стартовало несколько позже.

Получение полиэтилена

Опишем вкратце технологию производства обоих главных типов полиэтиленов.

ПЭВД (LDPE)

Этот полиэтилен, как понятно из названия, синтезируют при повышенном давлении. Синтез обычно проводят в реакторе трубчатого типа или автоклаве. Синтез проходит под действием окислителей – кислорода, пероксидов или и того, и другого. Этилен смешивают с инициатором полимеризации, сжимают до величины давления в 25 МПа и нагревают до 70 градусов С. Обычно реактор состоит из двух ступеней: в первой смесь еще больше разогревают, а во второй уже непосредственно проводят полимеризацию при еще более жестких условиях – температуре до 300 градусов С и давлении до 250 МПа.

Стандартное время нахождения этиленовой смеси в реакторе 70-100 секунд. За этот промежуток 18-20 процентов этилена преобразуется в полиэтилен. Затем непрореагировавший этилен отправляется на рециркуляцию, а получившийся ПЭ охлаждают до и подвергают грануляции. Полиэтиленовые гранулы вновь охлаждаются, сушатся и отправляются на упаковку. Полиэтилен низкой плотности производят в форме неокрашенных гранул.

ПЭНД (HDPE)

ПНД (ПЭ высокой плотности) производят при низком давлении в реакторе. Для синтеза применяют три основные вида техпроцесса полимеризации: суспензионный, растворный, газофазный.

Для производства ПЭ чаще всего применяют раствор этилена в гексане, который нагревают до 160-250 градусов С. Процесс проводят при давлении 3,4-5,3 МПа в течение времени контакта смеси с катализатором 10-15 минут. Готовый ПЭНД отделяют при помощи испарения растворителя. Гранулы получившегося полиэтилена проходят пропарку паром при температуре выше Т плавления ПЭ. Это нужно для перевода в водный раствор низкомолекулярных фракций ПЭ и удаления следов катализаторов. Как и ПЭВД, готовый ПЭНД обычно бывает бесцветным и отгружается в мешках по 25 кг, реже в биг-бэгах, цистернах или другой таре.

Виды полиэтилена

Помимо детально описанных в этой статье ПЭНД и ПЭВД промышленностью производятся и используются другие многочисленные типы полиэтиленов, основными группами из которых являются:

ЛПНП, LLDPE – линейный полиэтилен низкой плотности. Этот тип завоевывает всё большую популярность. По свойствам этот полиэтилен подобен ПЭВД, однако превосходит его по многим параметрам, в том числе по прочности и стойкости изделий к короблению.

mLLDPE, MPE – металлоценовый ЛПЭНП.

MDPE – ПЭ средней плотности.

ВМПЭ, HMWPE, VHMWPE – высокомолекулярный.

СВМПЭ, UHMWPE – сверхвысокомолекулярный.

Также существует большое количество сополимеров этилена с различными другими мономерами. Наиболее известными из них являются сополимеры с пропиленом, которые производят под общими названиями рандом- или статсополимер и блоксополимер. Помимо них производят сополимеры этилена с акриловой кислотой, бутил- и этилакрилатом, метилакрилатом и метилметилакрилатом, винилацетатом и т.д. Существуют и эластомеры на основе этилена, их обозначают аббревиатурами POP и POE.

Свойства полиэтилена

Говоря о характеристиках ПЭ нужно понимать, что свойства различных типов этого полимера сильно отличаются. Рассмотрим, как и в случае с синтезом, показатели двух наиболее распространенных типов.

ПЭ высокого давления (LDPE)

Молекулярная масса ПЭВД колеблется от 30 000 до 400 000 атомных единиц.

ПТР в зависимости от марки варьируется от 0,2 до 20 г/10 минут.

Читайте также:
Размещение рекламы

Степень кристалличности ПВД примерно составляет 60 процентов.

Температура стеклования равна минус 4 градуса С.

Температура плавления марок материала от 105 до 115 градусов С.

Плотность около 930 кг/куб.м.

Технологическая усадка при переработке от 1,5 до 2 процентов.

Основное свойство структуры полиэтилена высокого давления – разветвленное строение. Отсюда проистекает его низкая плотность, обусловленная рыхлой аморфно-кристаллической структурой материала на молекулярном уровне.

ПЭ низкого давления (HDPE)

Молекулярная масса ПЭНД колеблется от 50 000 до 1 000 000 атомных единиц.

ПТР в зависимости от марки варьируется от 0,1 до 20 г/10 минут..

Степень кристалличности ПНД составляет от 70 до 90 процентов.

Температура стеклования равна 120 градусов С.

Температура плавления марок материала от 130 до 140 градусов С.

Плотность около 950 кг/куб.м3.

Технологическая усадка при переработке от 1,5 до 2,0 процентов.

Общие свойства полиэтиленов

Химические свойства. ПЭ имеет низкую газопроницаемость. Его химстойкость зависит от молекулярной массы и от плотности полимера. ПЭ инертен к разбавленным и концентрированным основаниям, растворам всех солей, некоторым сильнейшим кислотам, органическим растворителям, маслам и смазкам. Полиэтилен не стоек к 50-процентной азотной кислоте и галогенам, например чистому хлору и брому. Причем бром и йод имею свойство диффузии сквозь полиэтилен.

Физические характеристики. Полиэтилен является эластичным достаточно жестким материалом (ПЭВД – существенно мягче, ПЭНД – жестче). Морозостойкость изделий из полиэтилена – до минус 70 градусов С. Высокая ударная вязкость, прочность, хорошие диэлектрические характеристики. Водо- и паропоглощение у полимера невысокое. С точки зрения физиологии и экологии ПЭ является нейтральным инертным веществом, без запаха и вкуса.

Эксплуатационные свойства полиэтилена. Деструкция ПЭ в атмосфере начинается с температуры 80 градусов С. Полиэтилен без специальных добавок не стоек к солнечной радиации и больше всего к ультрафиолету, легко подвергается фотодеструкции. Для уменьшения этого эффекта в композиции ПЭ добавляют стабилизаторы, например сажу для светостабилизации. Полиэтилен не выделяет вредные для здоровья и природы химикаты в окружающую среду, при этом он самостоятельно разлагается очень медленно – процесс занимает десятилетия. ПЭ довольно пожароопасен и поддерживает горение, этот факт нужно учитывать при его использовании.

Применение полиэтилена

Полиэтилен является самым популярным полимером в мире. Он неприхотлив в переработке и отлично поддается повторному использованию. Получить изделия из полиэтилена можно практически всеми разработанными на сегодняшний день методами переработки пластмасс. Он не требователен к качеству и конструкции оборудования и оснастке, ПЭ не нуждается в специальной подготовке перед переработкой, например сушке. Индустрией концентратов и добавок к полимерам производится огромное количество суперконцентратов пигментов для ПЭ и на основе полиэтилена. Во многих случаях они применимы для окраски в массе изделий не только из других полиолефинов, но и прочих полимеров.

В случае переработки полиэтилена методом экструзии получают пленку, применяющуюся на каждом шагу как в чистом виде, так и в виде пакетов в упаковке, фасовке, сельском хозяйстве; ПЭ трубы для водоснабжения и газа; оболочки кабелей; листы; вспененные профили и т.д..

Литьем полиэтилена под давлением производят многочисленные упаковочные изделия, например крышки и пробки, баночки. Также литьем производят медицинские изделия, хозяйственные товары бытового назначения, канцтовары, игрушки.

Полиэтилен можно переработать экструзионно-выдувным и инжекционно-выдувным формованием, ротоформованием, каландрованием, а также пневмо- или вакуумформованием из листов.

Более редкие, специализированные типы полиэтилена, например сшитый, хлорсульфированный, сверхвысокомолекулярный используют во многих отраслях, но больше всего в строительстве. Например сверхвысокомолекулярный ПЭ входит в состав композиций для выпуска оболочек оптиковолоконного кабеля. Армированный полиэтилен, в отличие от чистого полимера, может являться конструкционным материалом. Изделия из ПЭ хорошо поддаются сварке любыми методами: термоконтактным, газовым, с применением присадочного прутка, трением и т.п.

Экология и вторичное использование полиэтилена

В последние годы полиэтилен подвергается серьезному давлению из-за своей якобы не экологичности. На самом деле этот материал – один из самых безопасных. Проблема ПЭ в том, что это основной полимер, применяемый для производства пленок, в том числе тонких, и пакетов из них. Не имея адекватной политики по раздельному сбору мусора, многие низкоразвитые страны занимаются захоронением огромного количества ПЭ отходов, что приводит к попаданию полиэтилена в окружающую среду и водные ресурсы и загрязнению их.

Читайте также:
На что и как повесить шторы

Рис.3. Пакеты для мусора – типичное применение вторичного ПЭ

При этом в случае правильного сбора и сортировки мусора, полиэтиленовые отходы становятся ценным ресурсом и отличным вторичным сырьем. Уже достаточно большое количество предприятий в странах бывшего СССР закупают отходы полимера для переработки во вторсырье, получением гранул и последующим использованием в своем производстве или продажей вторичного ПЭ на рынке. Таким образом загрязнение планеты полиэтиленом должно в скором времени сойти на нет.

Объявления о покупке и продаже оборудования можно посмотреть на

Обсудить достоинства марок полимеров и их свойства можно на

Зарегистрировать свою компанию в Каталоге предприятий

Свойства и применение полимера полиэтилен

21-й век общепринято называть не только временем высоких технологий, но и веком полимеров. Именно благодаря получению новых веществ, синтезированных путем проведения сложных реакций, из нефти и других природных ископаемых, современная наука смогла получить сотни различных материалов.

За счет своих свойств, многие полимеры уже практически полностью вытеснили из некоторых сфер промышленности и быта привычные природные вещества – натуральный камень и древесину. Стоимость производства пластмасс невысокая, а технические характеристики некоторых полимеров не уступают металлу, что дало мощный толчок в широком распространении этих искусственно получаемых высокомолекулярных соединений.

Среди всех синтетических материалов однозначным лидером считается полиэтилен – вещество, получаемое путем полимеризации молекул этилена при соблюдении определенных технологических процессов. Область применения полиэтилена достаточно широка – от производства пакетов до строительных мембран и трубопроводов.

Основные разновидности

На сегодняшний день существует большое количество разновидностей полиэтилена, которые обладают определенными свойствами и техническими характеристиками. В зависимости от способа получения, различаются не только свойства, но и маркировка полиэтилена:

  • полиэтилен низкого давления (ПЭНД, HDPE). В процессе поляризации газообразного этилена благодаря определенному уровню давления, молекулярные связи имеют более плотную структуру и минимум ответвлений. Благодаря этому, материал имеет высокую прочность на разрыв. Другое название такого материала – полиэтилен высокой плотности (ПЭВП);
  • полиэтилен высокого давления (ПЭВД, LDPE). Отличается наличием длинных молекулярных цепей с большим количеством ответвлений. Обладает большей эластичностью, но меньшей прочностью на разрыв;
  • вспененный полиэтилен (ППЭ). По структуре полимер имеет большое количество закрытых пор, заполненных газом. Материал отличается низкой теплопроводностью, благодаря чему получил широкое применение в качестве утеплителя, звуко и гидроизолятора. Из него изготавливаются различные строительные пленки и мембраны;
  • сшитый полиэтилен (XPE, XPLE, PEX). Такой материал получают методом сшивки поперечных звеньев молекул. В итоге получается единая трехмерная структура, обладающая повышенной прочностью. Изделия из сшитого ПЭ получили высокий уровень жесткости и термостойкости, благодаря чему из полимера производят различные трубы;
  • линейный полиэтилен (ЛПЭНП, ПЭСП, LLDPE). Эту разновидность получают благодаря полимеризации молекул этилена с олефинами. По внутренней структуре линейный ПЭ отличается наличием большого числа коротких ответвлений и высокой прочностью молекулярной цепочки.

Кроме того существует еще масса разновидностей полиэтилена – хлорированный, армированный, экструдированный, пищевой, сверхвысокомолекулярный. Название и маркировка различных видов полиэтилена зависит от способа получения и дополнительных свойств материала.

Основные свойства и характеристики

Вне зависимости от маркировки и способа получения, полиэтилен, свойства и применение которого немного отличаются, обладает целым рядом общих характеристик:

  • абсолютная водонепроницаемость. Полимер не смачивается водой и не впитывает ее, если к нему не были применены различные химические реагенты, в основном кислоты и окислители;
  • высокая химическая стойкость. Материал не взаимодействует с водными растворами любых щелочей, кислот и солей, при комнатной температуре не поддается воздействию любых органических растворителей. При повышении температуры выше +60 градусов, легко растворяется под действием серной и азотной кислот;
  • имеет небольшой вес и различную плотность. Показатели зависят от разновидности и способа получения определенного вида полиэтилена;
  • кристаллизация полимера наступает в диапазоне температур от -60 до -296 градусов Цельсия.

Несмотря на наличие широкого спектра полезных свойств, которыми обладает полиэтилен, недостатки у материала также имеются. Они не являются глобальными, но их тоже стоит знать.

Читайте также:
Проверка автомата по току кз

В первую очередь, любой полиэтилен не разлагается в естественной среде, что может существенно ухудшить экологию планеты. Второй момент – это неспособность полимера противостоять высоким температурам (больше 100-120 градусов), что не дает возможности применять его в экстремальных температурных условиях.

Области применения

Благодаря широкому распространению, техническим характеристикам и невысокой стоимости получения, полиэтилен применяется во многих отраслях промышленности и народного хозяйства. Основными сферами использования можно считать следующие:

  • строительство. Сегодня существует масса специальных монтажных пленок и мембран, которые широко используют при постройке объектов в качестве паро и гидроизоляции. Для прокладки различных инженерных коммуникаций (в основном, магистрали подачи холодной воды), широко используются трубы из сшитого полиэтилена. В качестве изоляции проводов также применяют специальные защитные короба из полиэтилена;
  • упаковка. Наиболее распространенная область применения ПЭ. Мы уже не можем себе представить альтернативу пластиковым бутылкам, в которых мы регулярно покупаем напитки, масло, бытовую химию и многие другие товары. Существует масса полиэтиленовых контейнеров, для технического использования и пищевой промышленности. Упаковочный скотч и стретч-пленка изготавливаются также из полиэтилена. Пакеты для продуктов, которые продаются в любом супермаркете – это тоже продукт полимеризации этилена;
  • сельское хозяйство. Большой выбор различных пленок и мембран из полиэтилена дает возможность быстро и недорого изготовить парники и теплицы, системы полива и орошения с полиэтиленовыми насадками также получили широкое распространение;
  • товары народного потребления. Начиная от детских игрушек (используется только пищевой ПЭ) и, заканчивая бытовыми приборами, полиэтилен широко используется в нашей жизни.

Кроме того, некоторые разновидности этого полимера применяют в автомобилестроении и медицине.

Низкая стоимость, легкий и быстрый процесс получения, позволили полиэтилену получить широкое распространение во многих отраслях промышленности и быта, что по праву ставит этот полимер на первое место по популярности.

Полиэтилен, виды, характеристики, свойства и получение

Полиэтилен, виды, характеристики, свойства и получение.

Полиэтилен – термопластичный полимер этилена. Является органическим соединением и имеет длинные молекулы.

Описание и характеристики полиэтилена:

Полиэтилен – термопластичный полимер этилена, относится к классу полиолефинов. Также называется политеном.

Полиэтилен является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода . Таким образом, молекула полиэтилена имеют простую химическую структуру и представляет собою цепочку атомов углерода , к каждому из которых присоединены две молекулы водорода.

Химическая формула полиэтилена2H4)n. Молекулярный вес – до 500 000 г/моль.

Химическая формула этилена, из которого производится полиэтилен, C2H4. Рациональная формула этилена CH2=CH2.

В свою очередь полиолефины представляют собой класс высокомолекулярных соединений (полимеров), получаемых из низкомолекулярных веществ – олефинов (мономеров) – непредельных углеводородов (этилена, пропилена, бутилена и других альфа-олефинов). Они вырабатываются из нефти или природного газа путём полимеризации одинаковых (гомополимеризации) или разных (сополимеризации) мономеров в присутствии катализатора.

Полиэтилен внешне представляет собой твердую массу белого цвета (тонкие листы прозрачны и бесцветны).

Существует две модификации полиэтилена: линейный и нелинейные полиэтилен. Они отличаются друг от друга по структуре и соответственно по свойствам. В первой –линейной форме мономеры связаны в линейные цепи со степенью полимеризации обычно 5000 и более. Они не имеют боковых ответвлений от основной цепи. В другой – нелинейной форме имеются многочисленные боковые ответвления мономеров, которые присоединены к основной цепи случайным способом.

Полиэтилен проявляет различные свойства. Разнообразие свойств полиэтилена можно объяснить его молекулярной структурой, молекулярной массой и степенью кристалличности, которая, в свою очередь, зависит от молекулярной массы и степени ветвления мономеров. Чем меньше разветвлены полимерные цепи и чем меньше молекулярная масса, тем выше кристалличность полиэтилена и тем более он плотный. Таким образом, существует линейная зависимость между плотностью и степенью кристалличности.

Полиэтилен самый распространенный из полимеров . Каждый год его производится более 100 миллионов тонн, что составляет 34 % от общего объема производства всех пластмасс .

Физические, химические и иные свойства полиэтилена:

– чистый полиэтилен имеет белый цвет, непрозрачен в толстом слое, тонкие листы прозрачны и бесцветны,

Читайте также:
Натяжной потолок для кухни: какой лучше сделать, глянцевый или матовый, дизайн, монтаж, отзывы, фото

– кристаллизуется в диапазоне температур от -60 °С до минус 369 °С,

– не имеет запаха,

– имеет небольшой вес и различную плотность, которая зависит от разновидности и способа получения определенного вида полиэтилена,

– не чувствителен к удару, является амортизатором,

– имеет чрезвычайно низкую адгезию,

– обладает низким коэффициентом трения ,

– характеризуется абсолютной водонепроницаемостью. Он не смачивается водой и не впитывает ее. Однако кратковременная обработка полиэтилена кислотой или окислителями приводит к окислению поверхности и смачиванию ее водой, полярными жидкостями и клеями. В этом случае изделия из полиэтилена можно склеивать,

– при нагревании до 80-120°С размягчается. Полиэтилен не способен противостоять высоким температурам, что не дает возможность использовать его в экстремальных условиях,

– характеризуется морозостойкостью. Полиэтилен может эксплуатироваться при температурах от -70°С до 100 °С. Некоторые виды полиэтилена сохраняют свои полезные свойства при температурах ниже -120°С. Морозостойкость полиэтилена зависит от разновидности и способа получения определенного вида полиэтилена,

– полиэтилен в виде тонких пленок обладает высокой гибкостью и прозрачностью, а в виде листов становится жестким и непрозрачным,

– устойчив к действию воды,

– обладает отличной пароизоляцией и гидроизоляцией. Но проницаем для кислорода и углекислого газа ,

– под действием солнечного света становится хрупким. В качестве добавки-стабилизатора от воздействия ультрафиолетового излучения используют углеродную сажу,

– является химически стойким веществом,

– не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой. Но разрушается при действии 50%-й азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. При температурах выше 60 °С серная и азотная кислоты также быстро его разрушают.

– при комнатной температуре не растворяется в органических растворителях. При температуре выше 80 °С сначала набухает, а затем растворяется в ароматических углеводородах и их галогенопроизводных,

– горит голубоватым пламенем , со слабым светом и желтым кончиком, при этом издаёт запах парафина, то есть такой же, какой исходит от горящей свечи. Материал продолжает гореть на удалении источника пламени и производит потеки,

– из-за своей химической стойкости в естественной среде разлагается в течение порядка 500 лет, что существенно ухудшает экологическую обстановку. Поэтому для борьбы с загрязнением окружающей среды полиэтиленовыми пакетами около 40 стран ввели запрет или ограничение на продажу и (или) производство пластиковых пакетов. Однако если в состав полиэтилена ввести специальные добавки-деграданты время разложения в естественной среде составляет до 1,5-3 лет. Благодаря добавкам-биодеградантам он разлагается на элементарные составляющие: воду, углекислый газ и биомассу,

Полиэтилен: свойства и применение

Полимер представляет собой органическое соединение, относится к классу полиолефинов. Термопластичный полимер этилена своеобразная масса прозрачных тонких листов имеет множество практичных качеств, сделавших его незаменимых в обиходе. Его часто называют целлофаном.

История возникновения

Первая дата упоминания об изобретения полиэтилена относится к 1899 г. Родина возникновения химического соединения – Германия. Однако заслуга практичного применения и распространения материала в его современном виде принадлежит инженерам Гибсону и Фосету. С середины прошлого столетия для производства кабельной продукции, позднее для выработки упаковочного материала широкое использование получил синтетический полимерный материал. Так применение полиэтилена в промышленности позволило создавать новые виды продукции.

Химическая формула полиэтилена (CH2CHR)n

Разновидности

Известно две основные группы полимеров, которые различают по прочности и плотности основы материала. Это

  • Полиэтилен высокой плотности (высокого давления)
  • Полиэтилен низкой плотности (низкого давления)
  • Промышленность также выпускает полиэтилен средней плотности.

В разных источниках можно встретить другие названия, к примеру, сополимеры и гомополимеры. Но все они являются производными от двух основных групп. В процессе производства разработаны различные технологии выпуска широко востребованного материала. Именно технологические различия и физические свойства полиэтилена обосновывают разнообразность данного вида продукции.

Высокая прочность материала, другие востребованные свойства, которые обосновывают широкое использование тонкой прозрачной пленки, в сочетании с относительно низкой стоимостью производства, позволяют постоянно расширять область применения. Особенное свойство, обуславливающее термопластичность полиэтилена, вывело продукт на верхние позиции популярных упаковочных материалов.

Читайте также:
Правила утепления стен в частном доме изнутри

Особенности химического состава дают поистине неограниченные возможности его использования. В своей основе вещество является высокомолекулярным соединением, которое состоит из длинных разветвленных цепей. В зависимости от технологических особенностей производственного процесса при полимеризации вещества изменяются свойства конечного продукта.

Полимеризация при давлении 130 -150 МПа дает полиэтилен низкой плотности, он более пластичный. Полиэтилен высокой плотности, имеет склонность растрескиваться при физическом воздействии. Это обуславливается тем, что изготавливается в процессе каталитической полимеризации, линейная структура практически не содержит боковых ответвлений.

Свойства

В зависимости от плотности молекулярной массы продукта могут меняться его физические свойства полиэтилена.

Полиэтилен низкого давления свойства:

  • Имеет высокую способность к растяжению.
  • Стоек к химическим соединениям.
  • Не пропускает влагу.
  • Высокая теплостойкость.
  • Морозоустойчивость при сильном охлаждении.

Полиэтилен низкого давления применение:

  • Изготавливается пищевая и упаковочная пленка.
  • Рабочие перчатки и изоляционные материалы.
  • Широкое применение в кабельной промышленности.

Полиэтилен высокого давления свойства:

  • Допускается растрескивание под воздействием нагрузок.
  • Может деформироваться и менять изначальные размеры.
  • Отличается высокой химической стойкостью.
  • Диэлектричен.
  • Высокая радиационная устойчивость.
  • Морозоустойчив.

В промышленности из него изготавливается тара, упаковка для парфюмерной и пищевой промышленности (бутылки, тюбики и др.). Пригоден для изготовления контейнеров, труб и деталей трубопроводов. Разнообразие и физические свойства полиэтилена делают возможным успешно использовать материал в разных сферах деятельности. Материал занимает лидирующие позиции по использованию среди других пластмасс.

Важно. Полиэтилен безопасный для здоровья и экологически безвредный материал. Легко подлежит переработке, используется во вторичной форме.

Основные особенности присущие синтетическому материалу придают различия молекулярно-массовых распределений внутри полимера. Чем выше плотность молекулярной массы, тем жестче и тверже становится пластмасса. Эти химические свойства полиэтилена влияют на влагопроницаемость, прозрачность и стойкость при сохранении целостности поверхности готовой продукции.

Сферы применения

Изделия из полиэтилена применяются практически везде. Из прочного и недорогого материала изготавливают упаковку и контейнера для транспортировки товаров на длительные расстояния. Уникальные диэлектрические свойства полиэтилена нашли свое применение в производстве инструмента, защитной и рабочей одежды, кабельной продукции, товарах бытового применения и многое другое.

Универсальные свойства и применение полиэтилена в самых различных сферах повышает спрос и стимулирует разработку новых видов товаров и изделий. Из пнд изготавливают:

  • Провода для линий электропередач.
  • Изделия для использования в медицине.
  • Геотекстиль.
  • Новые виды строительных и отделочных материалов.
  • Инструменты и инвентарь для садово-огородного применения.
  • Изделия для авиационной промышленности.

Сфер применения полимера много, так применение пнд обусловливают особенности физических свойств и технические характеристики готовой продукции. Структура молекулы полиэтилена нд отличается кристалличностью и имеет иную плотность. Особенности производства – температура изготовления 120-150 0 С, давление до 2 МПа. Для выработки требуется присутствие специального катализатора.

При охлаждении полимера в процессе производства образуются плотные соединение имеющие стабильную устойчивость к высоким температурам. Из такого материала изготавливаются изделия, пригодные для кипячения и контакта с высокотемпературной средой.

Не менее широко используется полиэтилен высокого давления.Его примененяют при изготовлении товаров для морской, автомобильной, строительной промышленности и иных сферах производства. В основу производства легли некоторые химические отличия пластмассы, которые базируются на более низкой степени кристаллизации вещества. ПВД примененяют в следующих направлениях:

  • Изготовления выдувных изделий.
  • Выпуск пленок для упаковки.
  • Литье пластмасс под давлением.
  • Выпуск кабельной продукции.

Процесс изготовления ПЭВД — температура 200- 260 0 С, давление 150 – 300 МПа. Присутствие кислорода или органического пероксида обязательно.

Важно. Легкий эластичный, кристаллизующийся материал с теплостойкостью до 60 0 имеет один существенный недостаток – быстро стареет.

Пленки из полиэтилена

При производстве пленки и листов из полиэтилена может быть использован материал любой плотности. Популярная полиэтиленовая пленка, характеристики которой значительно выше, чем у других видов упаковки — один из самых востребованных и экономичных товаров. Современные технологии позволяют создать пленку из ПЭ толщиной от 0,03 мм, длина рулона достигает 300 м.

Пленка пригодна для упаковки пищевой продукции, сохраняет качество и внешний вид товара. Давно стали привычными некоторые виды спецодежды, изготовленные из непромокаемой пленки – плащи, накидки, перчатки хозяйственные и многое другое.

Читайте также:
Система кондиционирования дома

Армированная пленка характеризуется высокой прочностью и используется для изготовления скатертей, упаковки, защитной одежды, для производства теплиц. Сферы применения изделий из ПЭ постоянно расширяются, свойства полиэтиленовой пленки поистине универсальны.

Упаковочный материал в листах толщиной от 1 до 6 мм с шириной до 1400 мм вырабатывают методом вакуумного формирования. Крупногабаритные изделия из ПЭНД прочно вошли в нашу жизнь. Это трубы сантехнические, ванны, бачки и емкости различного назначения. Технологические приемы разнообразят ассортимент и назначение изделий, товары народного потребления из пластмассы вошли в каждый дом.

Ведущее место в мире сегодня занимает производство изделий из полимера. Ширится разновидность марок изделий. Основные группы, выпускаемые на сегодняшний день из полиэтилена и сополимеров, насчитывает не один десяток, давая возможность развиваться новым технологиям. Выпуск востребованных и качественных товаров постоянно увеличивается, находя новые сферы применения.

Силикатный клей – что это такое, состав, характеристики, для чего нужен, плюсы и минусы

Канцелярский силикатный клей – вязкое соединение, которое предназначено для использования на производстве и в быту. Применяется для соединения бумаги и картона, состав входит в строительные смеси и смазки, для значительного увеличения их устойчивости и защиты от внешних воздействий.

Что такое силикатный клей?

Вязкое и текучее вещество было изобретено в 1818 г. немецким ученым-химиком Яном фон Фуксом. С тех пор силикатный клей получил широкое применение благодаря простоте изготовления и недорогому природному сырью. Другое название – жидкое стекло, что объясняется тем, как выглядит силикатный клей. Его текучая прозрачная структура скрепляет разные по текстуре предметы и детали.

Силикатный клей – состав

Жидкое стекло – это соединение компонентов, в которое входит водный щелочной состав с полисиликатом натрия, калия или лития. Ингредиенты имеют минеральное происхождение. Основным компонентом силикатного клея является вещество, от которого он и получил свое название. Добыча главного ингредиента малозатратно, его можно найти в природе в виде залежей. То, из чего состоит силикатный клей, зависит от технологии производства:

  1. Соединение и последующее расплавление в емкости песка кварцевого и натрия гидрокарбоната (соды пищевой).
  2. Влияние на силикат гидроксидом калия, натрия или лития. Щелочной раствор доводят до температуры кипения.

Характеристики силикатного клея

Особые свойства жидкого стекла способствуют активному использованию материала при производстве строительных материалов. Обычный канцелярский силикатный клей слабо проводит тепло. Такое свойство нашло применение при производстве изоляторов промышленного и бытового назначения. Продукция на базе силикатного клея хорошо выдерживает высокие температурные нагрузки, переохлаждения. К другим характеристикам вязкого соединения относятся:

  • большая прочность;
  • пожарная безопасность;
  • хорошая водостойкость;
  • антикоррозийные свойства.

Для чего нужен силикатный клей?

Применяется вязкое вещество в разных сферах промышленности, при строительстве, в бытовых условиях. Так помимо прочного скрепления бумаги или картона клей конторский силикатный включен в раствор цемента для заливки фундамента. Другие области применения:

  • для обработки ванных комнат и плавательных бассейнов;
  • для спасения стволов деревьев от грибкового поражения;
  • для улучшения свойств строительных растворов;
  • для изготовления керамики и стеновых панелей.

Описывая, жидкий силикатный клей – что это такое, отметим, что это состав, которым пропитывают текстиль, дерево для придания им огнеупорности. С такой же целью его напыляют на любые виды электродов для сварки, предназначенных для эксплуатации в металлургии. Прекрасно проявляет свои особые качества состав при полировке мебели, половых покрытий и потолка.

Плюсы и минусы силикатного клея

Простота изготовления и небольшая стоимость сырья делают жидкое стекло очень доступным для использования компонентом. Наличие силикатов обеспечивают клеящие свойства продукта благодаря повышенной адгезии при работе с любыми поверхностями и материалами. Однако очевидны плюсы и минусы жидкого стекла, которые проявляются после его использования. Они связаны с физическими свойствами вещества. Силикатный конторский клей имеет много преимуществ:

  • простота применения;
  • прочность скрепления бумаги, картона, дерева, керамики, стекла, кожи;
  • возможность соединения разных поверхностей;
  • хорошая глубина проникновения в структуру;
  • пожаробезопасность и термостойкость;
  • водонепроницаемость;
  • антикоррозийность;
  • способность укрепления любого раствора.
  • пожелтение скрепленного материала;
  • деформация швов;
  • высыхание слишком быстрое;
  • невозможность использования перед покраской.
Читайте также:
Система кондиционирования дома

Как сделать силикатный клей в домашних условиях?

Если есть необходимость в соединении бумаги, картона или дерева, можно самостоятельно изготовить вязкий состав. Приготовить канцелярский клей способен каждый. Главное, иметь необходимые компоненты и знать точный рецепт. Обычный силикатный клей начинают приготовление с основного компонента декстрина, который делают следующим образом:

  1. Положить 2 ст. ложки крахмала в жаропрочную емкость.
  2. Поставить в духовку прогретую до 150°С на полтора часа.

Рецепт самого клея такой:

  1. Соединить воду с декстрином из расчета 2:1.
  2. Подогреть смесь на медленном огне до полного растворения.
  3. Добавить в остывший до комнатной температуры состав глицерол до нужной консистенции клея.
  4. Остудить состав и использовать по назначению.

Как использовать силикатный клей?

Вязкое вещество предназначено для эксплуатации в разных сферах жизнедеятельности людей. Офисные работники знают, что силикатный клей – это незаменимое средство для скрепления между собой бумажной документации. В строительстве и на предприятиях промышленности состав используют для увеличения прочности смесей и теплоизоляции. Есть особые условия применения конторского клея:

  1. Подготовленные для склеивания детали должны быть чистыми и сухими.
  2. Высокую сцепку обеспечивает предварительное нанесение грунтовки.
  3. Использованный состав необходимо плотно закрывать.
  4. Обработанные вязким веществом поверхности оставляют для абсолютного высыхания на сутки.

Что можно сделать из силикатного клея?

Умельцы используют этот состав для изготовления слайма или лизуна. Такая игрушка, предназначенная для успокоения нервов и развлечения детей. Канцелярский силикатный клей – это основной ингредиент слайма, который делает его тягучим и приятным на ощупь. Сделать игрушку еще и красивой можно следующим образом:

  1. Раскрошить тени для век до состояния порошка.
  2. Налить в емкость 100 мл силикатного клея.
  3. Добавить небольшое количество воды комнатной температуры и размешать.
  4. Всыпать 1 ч. ложку измельченных теней.
  5. Влить 0,5 ч. ложку тетрабората натрия (борной кислоты).
  6. Размешать до образования плотной структуры.
  7. Размять получившееся вещество в руках.

Как почистить посуду силикатным клеем?

Промышленная бытовая химия значительно облегчает уход за посудой, но при этом очевиден их вред. Наши бабушки знали, как с помощью силикатного клея очистить сковороду. Эффективное чистящее средство можно легко сделать в домашних условиях. Необходимые ингредиенты:

  • вода – 10 л;
  • силикатный клей – 1 флакон;
  • кальцинированная сода – 200 г;
  • хозяйственное мыло – 1 брусок.

Перечисленные компоненты смешивают в большой емкости из металла. Вода должна заполнять кастрюлю наполовину. Мыло трут на крупной терке и всыпают в жидкость. Затем добавляют соду и силикатный клей. Смесь нагревают до растворения ингредиентов и погружают в нее посуду. Процесс кипячения может составлять от получаса до трех часов. Время будет зависеть от степени загрязнения сковороды. В результате жир на поверхности посуды полностью растворяется и его можно легко убрать щеткой.

Как убрать силикатный клей с одежды?

Иногда во время работы капли жидкого стекла попадают на ткань. Учитывая, сколько сохнет силикатный клей (20-30 мин), становится понятно, что убрать его очень трудно. Пятна портят ткань и в некоторых случаях удалить их невозможно. Есть эффективный способ, как вывести силикатный клей с одежды, при помощи раствора соды:

  1. Приготовить состав из 2 л воды, 50 г стирального порошка и 50 г пищевой соды.
  2. Окунуть одежду в раствор минимум на 3 ч.
  3. Очистить запачканный участок при помощи щетки.

Чем можно заменить силикатный клей?

Отсутствие необходимого вещества может прервать важный рабочий процесс в офисе или во время строительства. Если отсутствует силикатный клей, жидкое стекло, нужные для скрепления бумаг, картона или деревянных поверхностей, то заменой станет вязкий состав марки ПВА. Такое соединение подойдет и для добавления в цемент. Смесь подходит для отлива фундамента или других работ во время строительства. В масштабах промышленных производств можно применять любой пластификатор.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: