Расчет солнечной электростанции для дома

Расчет солнечной электростанции для дома

Выберите месторасположение объекта, воспользовавшись поиском по названию города или передвигая метку на карте. Введите параметры солнечных панелей, ветрогенераторов, воздушных и/или тепловых коллекторов.

Для расчета солнечных панелей и ветрогенераторов укажите среднесуточное потребление (кВт·ч/сутки) или воспользуйтесь «калькулятором» средней нагрузки, расположенным под картой, справа. Рассчитайте время автономной работы системы, задав данные ёмкости и напряжения аккумуляторных батарей.

Для расчёта тепловой энергии или объема горячей воды выберите тип и количество солнечных коллекторов.

Вы можете воспользоваться подсказками, расположенными под калькулятором или обратиться за помощью в расчётах к нашим специалистам по телефону +7(812)903-28-88, info@helios-house.ru.

Как подобрать комплектацию солнечной и/или ветровой электростанции?

1. Мы рекомендуем начать с расчёта необходимого количества энергии или суточного потребления вашего дома/объекта в кВт*ч/сутки. Эти данные можно получить, списав с электросчетчика или рассчитать в калькуляторе средней нагрузки, справа под картой. Обратите внимание, что данные средней нагрузки в летний и зимний период могут отличаться. Рекомендуем заполнить оба показателя. На графике появятся две прямые: синяя линия указывает зимнее потребление, красная – летнее.

2. Выберите регион установки, для этого используйте «поиск города по названию» или двигайте метку на карте. Инсоляция в разных регионах может значительно отличаться.

3. Выберите тип и количество солнечных панелей в соответствии с суточным потреблением вашего объекта. На графике появится кривая жёлтого цвета, она показывает выработку выбранного вами солнечного массива, при условии ориентации его строго на юг и соблюдении рекомендуемого угла наклона (зенитный угол).

4. Чтобы увидеть количество энергии, вырабатываемое панелями в разные месяцы года – наведите курсор на точку на графике, над интересующим вас месяцем. Получить данные вырабатываемой энергии в разрезе всего года можно в нижнем, общем графике «Суммарная выработка электроэнергии», для этого достаточно нажать закладку «Среднемесячная выработка, кВт*ч».

5. Подберите необходимую ёмкость аккумуляторных батарей, для этого справа под картой выбирайте желаемую ёмкость аккумуляторов и их напряжение. Время автономной работы системы (часов) с выбранным массивом аккумуляторов и при указанной суточной нагрузке высветится ниже.

6. Обратите внимание, что в большинстве случаев перекрыть зимнее (ноябрь-февраль) потребление сложно. Поэтому для зимней эксплуатации используют резервные источники энергии, при полном отсутствии сети это может быть ветрогенератор или топливный генератор.

7. Чтобы добавить к вашей резервной системе ветрогенератор откройте вкладку «Расчет энергии, вырабатываемой ветрогенераторами». Выберите количество и модель ветрогенератра, высоту мачты и окружающий ландшафт. На графике появится голубая кривая, отображающая выработку ветрогенератора в кВт*ч. Чтобы увидеть количество энергии, вырабатываемое в определенные месяцы года – наведите курсор на точку на графике, над интересующим вас месяцем. Получить данные вырабатываемой энергии в разрезе всего года можно в нижнем, общем графике «Суммарная выработка электроэнергии», для этого достаточно нажать закладку «Среднемесячная выработка, кВт*ч». Обратите внимание, что в нижнем графике «Суммарная выработка электроэнергии» отображаются общие данные как солнечной, так и ветровой системы в сумме.

Как подобрать тип и количество водяных солнечных коллекторов?

Объем горячей воды, получаемой от того или иного водного солнечного коллектора можно рассчитать, открыв вкладку «Расчет энергии, вырабатываемой водяными солнечными коллекторами».

Выберите модель и количество коллекторов и укажите угол наклона коллектора в графе «зенитный угол». На графике появится жёлтая кривая, указывающая количество воды в литрах нагреваемой в сутки в различные месяцы года. Температура нагрева 25°С.

Как рассчитать количество тепловой энергии и выбрать воздушный солнечный коллектор?

Для расчета объема нагреваемого солнечным коллектором воздуха откройте вкладку «Расчёт энергии, вырабатываемой воздушными солнечными коллекторами» выберите модель и количество коллекторов. Обязательно укажите угол наклона коллектора в графе «зенитный угол». Для моделей с креплением на стену установите значение 90.

На графике появится желтая кривая, отображающая объем горячего воздуха в м³/сутки при нагреве на 44°С.

Обратите внимание, что полученные при расчетах данные приблизительные. On-line калькулятор в своих расчётах опирается на базы данных о инсоляции на земной поверхности в разных точках земного шара. Период наблюдения, учтённый в базе данных инсоляции земной поверхности – чуть более двадцати лет. Фактическая выработка энергии может отличаться из года в год, и зависит от инсоляции в конкретном периоде. К тому же данные калькулятора предполагают расположение источников тепловой и электрической энергии (солнечных панелей и коллекторов) строго на юг!

Онлайн калькулятор солнечных батарей, калькулятор расчета солнечной электростанции.

Январь Февраль Март Апрель Май Июнь Июль Август Сентябрь Октябрь Ноябрь Декабрь
2.27 5.32 8.77 10.89 12.59 12.49 12.46 11.19 8.32 5.02 3.02 1.55
Данный калькулятор предназначен для оценки выработки электрической энергии солнечными батареями.

Для каждой точки местности России, мы собрали данные по инсоляции с точностью 0,1 градуса по широте и долготе. Данные были любезно предоставлены сервисом NASA где история измерений ведется с 1984 года.

Для использования нашего калькулятора выберите местоположение вашей солнечной электростанции передвигая метку по карте или воспользуйтесь полем поиска на карте. Наш калькулятор работает только по территории России.

1. Если вы знаете какие солнечные батареи вы будете использовать, или они уже установлены в вашей солнечной станции – выберите солнечные батареи нужной мощности и их количество.

Читайте также:
Мраморные подоконники: стильные изделия для оформления оконных проемов

2. Укажите угол наклона вашей крыши, место установки. Также наш калькулятор автоматически показывает оптимальный угол наклона солнечной батареи для выбранной точки местности. Угол показывается для зимы, оптимальный – средний для всего года, для лета. Это особенно важно если вы только планируете установку солнечной станции и при ее строительстве сможете указать строителям необходимый угол для монтажа СБ.

Если например вы планируете установить солнечные батареи на крышу вашего дома и угол установки предопределен конструкцией, просто укажите его в поле ввода произвольного угла.
Наш калькулятор будет вести расчет учитывая угол вашей крыши.

3. Очень важно правильно оценивать мощность потребителей электроэнергии вашей солнечной станции при подборе необходимого количества солнечных батарей.

В калькуляторе нагрузок для солнечной электростанции выберите электроприборы которые вы будете использовать, задайте их количество и мощность в ваттах, а также примерно время использования в сутки.

Например для небольшого дома выбираем:
  • Электролампа – 3шт мощностью 50Вт каждая, работают 6 часов в сутки – итого 0,9 кВт часов/сутки.
  • Телевизор – 1шт мощностью 150Вт, работает 4 часа в сутки – итого 0,6 кВт часов/сутки.
  • Холодильник – 1шт мощностью 200Вт, работает 6 часов в сутки – итого 1,2 кВт часов/сутки.
  • Компьютер – 1шт мощностью 350Вт, работает 3 часа в сутки – итого 1,05 кВт часов/сутки.

Телевизор современный с плоским экраном, светодиодный потребляет от 100 до 200 Вт, холодильник, в нем работает компрессор и работает не постоянно, а тогда когда нужен холод, т.е. чем чаще вы открываете дверь холодильника, тем больше электричества он съест. Обычно холодильник работает 6 часов в сутках, остальное время отдыхает. Компьютер например вы используете в среднем 3 часа в сутки.

При заданных условиях потребления вы получите необходимую мощность для электропитания ваших электроприборов.
Для нашего примера суммарное потребление электроприборов в сутки составит 3,75 кВт*час в сутки.

Давайте подберем необходимое количество солнечных панелей для нашего примера, в регионе Санкт-Петербург:

Возьмем солнечные модули 250Вт, установим оптимальный угол наклона предложенный программой равный 60 градусов.
Увеличивая количество солнечных батарей мы увидим, что при установке 3х солнечных модулей 250Вт потребление наших электроприборов 3,75 кВт час сутки начинает перекрываться на графике выработке уже с апреля по сентябрь, что достаточно для тех людей которые например пребывают на даче летом.
Если вы хотите эксплуатировать СБ круглогодично, то вам понадобится минимум 6 солнечных модулей по 250Вт, а лучше 9шт. Учтите также, что зимой с ноября по середину января в Питере солнца скорее нет, чем оно есть. И в данное время года вы будете использовать бензо-дизель генератор для подзарядки аккумуляторов.

Под графиком выработки находится сводная таблица с числовыми данными о выработке солнечной электростанции в удобном числовом виде.

Заполните форму ниже, отправьте нам данные своего расчета и получите коммерческое предложение для вашей солнечной электростанции.

Расчет солнечной электростанции с помощью калькулятора носит предварительный характер. Каждый объект является индивидуальным, для формирования окончательного предложения под «ключ» с учетом монтажа и технико-экономического обоснования мы рекомендуем провести консультацию с нашими специалистами по телефону или заказать выезд инженера к вам. По итогам общения наши специалисты подготовят и предоставят комплексное предложение по стоимости и монтажу вашей солнечной электростанции.

Для того, чтобы наши менеджеры смогли подготовить для Вас предварительные расчеты по стоимости оборудования и монтажу, отправьте нам данные своего расчета. Если информации будет недостаточно, наш специалист свяжется с Вами для уточнения.

Калькулятор солнечных батарей для расчета выработки электрической энергии и окупаемости

Данные по инсоляции предоставлены сервером NASA, история измерений ведется с 1984 года и является самой достоверной в мире информацией на сегодняшний день.

Стоимость солнечных батарей Срок окупаемости солнечных батарей Чистая прибыль за 20 лет
Данный калькулятор предназначен для оценки выработки электрической энергии солнечными батареями и срока их окупаемости.

Мы предоставляем и используем для расчетов данные солнечной инсоляции в любой точке земного шара. Точность местоположения составила 0,1 градус долготы и широты.

Что бы воспользоваться нашим калькулятором укажите местоположение вашей солнечной электростанции на Яндекс карте вручную или введите название населенного пункта в поле поиска.

Заполняем данные:

  1. Из выпадающего списка выберете модель и количество солнечных батарей которые вы планируете использовать или уже используете. Если в предложенном списке нет необходимых вам солнечных батарей, выберете «У меня другая солнечная батарея»
  2. Наш калькулятор автоматически рассчитает и покажет оптимальный угол наклона ( «Оптимум» ) для максимальной усредненной выработки в год, а так же оптимальный зимний и летний угол, которые будут полезны в случае использования вами поворотного механизма или эксплуатации электростанции в определенное время года ( например только летом, в этом случае вам стоит ориентироваться именно на угол «Лето»). Если по каким то причинам вы не хотите использовать предложенные системой оптимальные углы ( к примеру вы планируете монтировать батареи на кровлю своего дома, и угол предопределяется уже имеющейся конструкцией), есть возможность задать произвольный ( необходимый вам угол ). При изменении угла, данные по выработки будут пересчитаны автоматически.
  3. При выборе солнечных батарей крайне важно правильно рассчитать величину мощности энергопотребления. Для этого в калькуляторе вам предложено указать электрические приборы которыми вы будете пользоваться. Укажите их количество, мощность, а так же время работы в течении суток. Если в предложенном нами перечне нет необходимого вам прибора, вы можете воспользоваться пунктом «Другой прибор».
Читайте также:
Пластиковые скамейки: садовая лавочка для дачи и скамья со спинкой, складная и с пластиковым сиденьем, белые и другого цвета

Например для небольшого загородного дама выбираем:

  • Электролампа – 3шт х 50Вт х 6ч/сут итого 0,9кВт ч/сут,
  • Телевизор – 1шт х 150Вт х 4ч/сут итого 0,6кВт ч/сут,
  • Холодильник – 1шт х 200Вт х 6ч/сут итого 1,2кВт ч/сут,
  • Циркуляционный насос – 1шт х 50Вт х 21ч/сут итого 1,05 кВт ч/сут.

Современные модели ЖК телевизоров потребляют 100-200Вт. Холодильник работает не постоянно. Основным потребителем энергии в нем является компрессор, который включается, если требуется холод. В среднем холодильник работает около 6 ч/сут. Циркуляционный насос используется практически круглосуточно. Все эти данные позволяют вычислить необходимую мощность для энергопитания используемых вами приборов.

В нашем случае суммарное потребление в сутки составит 3,75 кВт ч/сут.

Теперь давайте подберем необходимое количество солнечных батарей для Краснодарского края:

Мы выбираем солнечные модули, мощность которых составляет 280Вт, далее выбираем угол наклона, предложенный в качестве оптимального программой, то есть 45 градусов.

Далее нам следует выбрать необходимое количество батарей.

Дойдя до трех модулей мы увидим, что сможем перекрыть энергопотребление наших приборов в период с апреля по сентябрь. Этого будет достаточно если эксплуатация дома происходит только в этот период ( то есть летнее время ). Для круглогодичной эксплуатации дома вам потребуется минимум 6 панелей мощностью 280 Вт каждая. При этом лучше будет взять 9 штук, чтобы не испытывать дефицита в пасмурные дни.

График выработки очень удобен для визуальной оценки и выбора оптимального числа солнечных панелей. Под ним предлагается информативная сводная таблица, в которой представлены данные о выработке солнечной электростанции и планируемой нагрузке.

Не забудьте заполнить форму и получить коммерческое предложение для вашей солнечной электростанции.

Расчет солнечной электростанции при помощи нашего калькулятора является предварительным. Нужно принимать во внимание индивидуальность каждого объекта, и чтобы сформировать предложение «под ключ», учитывающее монтаж, техническое и экономическое обоснование, необходимо проконсультироваться с нашими специалистами. Сделать это можно по телефону или заказать выезд инженера к вам. По результатам разговора специалисты сделают предложение, которое будет отвечать вашим требованиям по максимуму. В комплексном предложении будет включена стоимость самой электростанции и ее профессиональный монтаж.

Чтобы мы могли сделать предварительный расчет, отправьте нам свои данные при помощи специальной формы. Если какой-либо информации будет не хватать, наши специалисты свяжутся с вами для уточнения деталей.

Солнечные батареи своими руками. Расчет и выбор солнечных элементов

Солнечные батареи редко рассматриваются в качестве единственного источника электроэнергии, тем не менее, целесообразность в их установке есть. Так, в безоблачную погоду правильно рассчитанная автономная система сможет обеспечивать электроэнергией подключенные к ней электроприборы практически круглые сутки. Впрочем, грамотно скомплектованные солнечные панели, аккумуляторы и вспомогательные устройства даже в пасмурный зимний день позволят значительно снизить затраты на оплату электроэнергии по счетчику.

Использую солнечные панели из элементов уже 2-й год. Был вынужден, так как в кооперативе, где мой гараж, очень надолго отключили свет. Собрал 2 шт. по 60 Ватт, контроллер купил и инвертер на 1500 Вт. Полная независимость просто окрыляет. И свет есть, и работа ручным инструментом доставляет удовольствие.

Правильная организация автономных систем электроснабжения на основе солнечных батарей – это целая наука, но, опираясь на опыт пользователей нашего портала, мы можем рассмотреть общие принципы их создания.

Что такое солнечная батарея

Солнечная батарея (СБ) представляет собой несколько фотоэлектрических модулей, объединенных в одно устройство с помощью электрических проводников.

И если батарея состоит из модулей (которые еще называют панелями), то каждый модуль сформирован из нескольких солнечных элементов (которые называют ячейками). Солнечная ячейка является ключевым элементом, который находится в основе батарей и целых гелиоустановок.

На фото представлены солнечные ячейки различных форматов.

А вот фотоэлектрическая панель в сборе.

На практике фотоэлектрические элементы используются в комплекте с дополнительным оборудованием, которое служит для преобразования тока, для его аккумуляции и последующего распределения между потребителями. В комплект домашней солнечной электростанции входят следующие устройства:

  1. Фотоэлектрические панели – основной элемент системы, генерирующий электричество при попадании на него солнечного света.
  2. Аккумуляторная батарея – накопитель электроэнергии, позволяющий обеспечивать потребителей альтернативным электричеством даже в те часы, когда СБ его не вырабатывают (например, ночью).
  3. Контроллер – устройство, отвечающее за своевременную подзарядку аккумуляторных батарей, одновременно защищающее аккумуляторы от перезарядки и глубокого разряда.
  4. Инвертор – преобразователь электрической энергии, позволяющий получать на выходе переменный ток с требуемой частотой и напряжением.

Схематично система электроснабжения, работающая от солнечных батарей, выглядит следующим образом.

Схема довольно проста, но для того, чтобы она эффективно работала, необходимо правильно рассчитать рабочие параметры всех задействованных в ней устройств.

Расчет фотоэлектрических панелей

Первое, что необходимо знать, собираясь рассчитывать конструкцию фотоэлектрических преобразователей (панелей ФЭП), это количество электроэнергии, которое будет потреблять оборудование, подключенное к солнечным батареям. Просуммировав номинальную мощность будущих потребителей солнечной энергии, которая измеряется в Ваттах (Вт или кВт), можно вывести среднемесячную норму потребления электроэнергии – Вт*ч (кВт*ч). А требуемая мощность солнечной батареи (Вт) будет определяться, исходя из полученного значения.

Читайте также:
Пистолет для монтажной пены «Зубр» (30 фото): достоинства моделей серии «Профессионал», как их разобрать и отзывы покупателей

Для примера рассмотрим перечень электрооборудования, которое сможет обеспечивать энергией небольшая солнечная электростанция мощностью 250 Вт.

Таблица взята с сайта одного из производителей солнечных панелей.

Налицо несоответствие между суточным потреблением электроэнергии – 950 Вт*ч (0,95 кВт*ч) и значением мощности солнечной батареи – 250 Вт, которая при непрерывной работе должна генерировать в сутки 6 кВт*ч электроэнергии (что намного больше обозначенных потребностей). Но раз уж мы говорим именно о солнечных панелях, то следует помнить, что свою паспортную мощность эти устройства способны развивать только в светлое время суток (примерно с 9-ти до 16-ти часов), да и то в ясный день. В пасмурную погоду выработка электроэнергии также заметно падает. А утром и вечером объем электроэнергии, вырабатываемой батареей, не превышает 20–30% от среднесуточных показателей. К тому же, номинальная мощность может быть получена с каждой ячейки только при наличии оптимальных для этого условий.

Почему номинал батареи 60 Вт, а она выдает 30? Значение 60 Вт производители ячеек фиксируют при инсоляции в 1000Вт/м² и температуре батареи – 25 градусов. Таких условий на земле, а тем более в средней полосе России, нет.

Все это учитывается, когда в конструкцию солнечных панелей закладывается определенный запас мощности.

Теперь поговорим о том, откуда взялся показатель мощности – 250 кВт. Указанный параметр учитывает все поправки на неравномерность солнечного излучения и представляет собой усредненные данные, основанные на практических экспериментах. А именно: измерение мощности при различных условиях эксплуатации батарей и вычисление ее среднесуточного значения.

Когда узнаете объем потребления, выбирайте фотоэлектрические элементы, исходя из требуемой мощности модулей: каждые 100Вт модулей вырабатывают 400-500 Вт*ч в сутки.

Идем дальше: зная среднесуточные потребности в электричестве, можно рассчитать требуемую мощность солнечных батарей и количество рабочих ячеек в одной фотоэлектрической панели.

При осуществлении дальнейших расчетов будем ориентироваться на данные уже знакомой нам таблицы. Итак, предположим, что суммарная мощность потребления равна примерно 1 кВт*ч в сутки (0,95 кВт*ч). Как мы уже знаем, нам понадобится солнечная батарея, обладающая номинальной мощностью – не менее 250 Вт.

Предположим, что для сборки рабочих модулей вы планируете использовать фотоэлектрические ячейки с номинальной мощностью – 1,75 Вт (мощность каждой ячейки определяется произведением силы тока и напряжения, которые генерирует солнечный элемент). Мощность 144-х ячеек, объединенных в четыре стандартных модуля (по 36 ячеек в каждом), будет равна 252 Вт. В среднем с такой батареи мы получим 1 – 1,26 кВт*ч электроэнергии в сутки, или 30 – 38 кВт*ч в месяц. Но это в погожие летние дни, зимой даже эти значения можно получить далеко не всегда. При этом в северных широтах результат может быть несколько ниже, а в южных – выше.

Есть солнечные батареи – 3,45 кВт. Работают параллельно с сетью, поэтому КПД – максимально возможный:

  • июнь 467кВт*ч.
  • июль 480 кВт*ч.
  • август 497 кВт*ч.
  • сентябрь 329 кВт*ч.
  • октябрь 305 кВт*ч.
  • ноябрь 320 кВт*ч.
  • декабрь 216 кВт*ч.
  • январь 2014 пока 126 кВт*ч.

Эти данные чуть выше средних значений, т. к. солнца было больше обычного. Если циклон затяжной будет, то выработка в зимний месяц может не превысить 100-150 кВт*ч.

Представленные значения – это киловатты, которые можно получить непосредственно с солнечных батарей. Сколько же энергии дойдет до конечных потребителей – это зависит от характеристик дополнительного оборудования, встроенного в систему электроснабжения. О них мы поговорим позже.

Как видим, количество солнечных элементов, необходимых для генерирования заданной мощности, можно рассчитать лишь приблизительно. Для более точных расчетов рекомендуется использовать специальные программы и онлайн калькуляторы солнечной энергии, которые помогут определить требуемую мощность батареи в зависимости от многих параметров (в том числе, и от географического положения вашего участка).

Если с первого раза произвести правильный расчет фотоэлектрических панелей не удалось (а непрофессионалы очень часто сталкиваются с подобной проблемой), это не беда. Недостающую мощность всегда можно будет восполнить, установив несколько дополнительных фотоэлементов.

Разновидности фотоэлектрических элементов

С помощью настоящей главы постараемся развеять заблуждения, касающиеся преимуществ и недостатков наиболее распространенных фотоэлектрических элементов. Это упростит вам выбор подходящих устройств. Широкое распространение сегодня получили монокристаллические и поликристаллические кремниевые модули для солнечных батарей.

Так выглядит стандартный солнечный элемент (ячейка) монокристаллического модуля, который можно безошибочно отличить по скошенным углам.

Ниже представлено фото поликристаллической ячейки.

Какой модуль лучше? Пользователи FORUMHOUSE активно спорят по этому поводу. Кто-то считает, что поликристаллические модули работают более эффективно при пасмурной погоде, при этом монокристаллические панели демонстрируют превосходные показатели в солнечные дни.

У меня моно – 175 Вт дают на солнце под 230 Вт. Но я отказываюсь от них и перехожу на поликристаллы. Потому что, когда небо чистое, электричества хоть залейся с любого кристалла, а вот когда пасмурно – мои вообще не работают.

При этом всегда найдутся оппоненты, которые после проведения практических замеров полностью опровергают представленное утверждение.

У меня получается все наоборот: поликристаллы очень чувствительны к затемнению. Стоит маленькому облачку пройти по солнцу, как это сразу отражается на количестве вырабатываемого тока. Напряжение, кстати, практически не меняется. Монокристаллическая же панель ведет себя более стабильно. При хорошем освещении обе панели ведут себя очень хорошо: заявленная мощность обеих панелей – 50Вт, обе эти самые 50Вт выдают. Отсюда мы видим, как улетучивается миф о том, что монопанели дают больше мощности при хорошем освещении.

Второе утверждение касается срока службы фотоэлектрических элементов: поликристаллы стареют быстрее монокристаллических элементов. Рассмотрим данные официальной статистики: стандартный срок службы монокристаллических панелей составляет 30 лет (некоторые производители утверждают, что такие модули могут работать до 50 лет). При этом период эффективной эксплуатации поликристаллических панелей не превышает 20-ти лет.

Читайте также:
Правильно организованный дизайн узкого длинного коридора увеличит пространство

Действительно, мощность солнечных батарей (даже с очень высоким качеством) с каждым годом эксплуатации уменьшается на определенные доли процента (0,67% – 0,71%). При этом в первый год эксплуатации их мощность может снизиться сразу на 2% и 3% (у монокристаллических и поликристаллических панелей – соответственно). Как видим, разница есть, но она незначительна. А если учесть, что представленные показатели во многом зависят от качества фотоэлектрических модулей, то разницу и вовсе можно не брать во внимание. Тем более, известны случаи, когда дешевые монокристаллические панели, изготовленные нерадивыми производителями, теряли до 20% своей мощности в первый же год эксплуатации. Вывод: чем надежнее производитель фотоэлектрических модулей, тем долговечнее его продукция.

Многие пользователи нашего портала утверждают, что монокристаллические модули всегда дороже поликристаллических. У большинства производителей разница в цене (в пересчете на один ватт генерируемой мощности) на самом деле ощутима, что делает покупку поликристаллических элементов более привлекательной. Поспорить с этим нельзя, но не поспоришь и с тем, что КПД монокристаллических панелей выше, чем у поликристаллов. Следовательно, при одинаковой мощности рабочих модулей поликристаллические батареи будут иметь большую площадь. Иными словами, выигрывая в цене, покупатель поликристаллических элементов может проиграть в площади, что при недостатке свободного пространства под установку СБ может лишить его так очевидной на первый взгляд выгоды.

У распространенных монокристаллов КПД, в среднем, равняется 17%-18%, у поли – около 15%. Разница – 2%-3%. Однако по площади эта разница составляет – 12%-17%. С аморфными панелями разница еще нагляднее: при их КПД – 8-10% монокристаллическая панель может быть по площади в два раза меньше аморфной.

Аморфные панели – это еще одна разновидность фотоэлектрических элементов, которые пока не успели стать достаточно востребованными, несмотря на свои очевидные преимущества: низкий коэффициент потери мощности при повышении температуры, способность генерировать электроэнергию даже при очень слабом освещении, относительная дешевизна одного производимого кВт энергии и так далее. А одна из причин низкой популярности кроется в их весьма ограниченном КПД. Аморфные модули еще называют гибкими модулями. Гибкая структура значительно облегчает их установку, демонтаж и хранение.

Не знаю, кто это аморфные рекламирует. КПД у них низкий, места почти в два раза больше занимают, при этом с возрастом КПД, так же, как и у кристаллических, снижается. Классические модули рассчитаны на 25 лет эксплуатации с потерей КПД в 20%. Плюс у аморфных пока только один: выглядят, как черное стекло (можно весь фасад такими покрыть).

Выбирая рабочие элементы для строительства солнечных батарей, в первую очередь следует ориентироваться на репутацию их производителя. Ведь именно от качества зависят их реальные рабочие характеристики. Также нельзя упускать из вида условия, при которых будет производиться монтаж солнечных модулей: если площадь, отведенная под установку солнечных батарей, у вас ограничена, то целесообразно использовать монокристаллы. Если недостатка в свободном пространстве нет, то обратите внимание на поликристаллические или аморфные панели. Последние могут оказаться даже практичнее панелей кристаллических.

Приобретая готовые панели от производителей, можно значительно упростить себе задачу по строительству солнечных батарей. Для тех же, кто предпочитает все создавать своими руками, процесс изготовления солнечных модулей будет описан в продолжении настоящей статьи. Также в ближайшее время мы планируем рассказать о том, по каким критериям следует выбирать аккумуляторы, контроллеры и инверторы – устройства, без которых ни одна солнечная батарея не сможет функционировать полноценно. Следите за обновлениями нашей статейной ленты.

На фото изображены 2 панели: самодельная монокристаллическая на 180Вт (слева) и поликристаллическая от производителя на 100 Вт (справа).

О самых популярных альтернативных источниках энергии вы сможете узнать в соответствующей теме, открытой для обсуждения на нашем портале. В разделе, посвященном строительству автономного дома, можно узнать много интересного об альтернативной энергетике и о солнечных батареях, в частности. А небольшой видеосюжет расскажет об основных элементах стандартной солнечной электростанции и об особенностях установки солнечных панелей.

Альтернативная энергия Альтернативная энергетика, возобновляемые источники энергии, энергетические ресурсы планеты.

Солнечная система с аккумуляторами может питать много приборов при условии, что их энергопотребление не превышает количество энергии, произведенной генератором. Поэтому необходимо правильно определить мощность системы. Первый шаг в этом направлении – составление спецификации, т.е. технического описания системы.

Для расчета солнечной системы, вам пригодится on-line калькулятор на нашем сайте – Расчет солнечных батарей . При проектировании домашней фотоэлектрической системы сначала нужно составить список всех электроприборов в доме, выяснить их потребляемую мощность и внести в список.

Читайте также:
Рамный анкер (металлический рамный дюбель): размеры и монтаж

В таблице внизу даны для справки данные о средней потребляемой мощности некоторых приборов. Однако необходимо помнить, что это всего лишь приблизительные оценки. Чтобы рассчитать потребляемую мощность (E) системы с инвертором (для приборов переменного тока), нужно внести поправку (умножить среднее потребление на поправочный коэффициент, чтобы получить общую мощность). Так же для того, чтобы учесть потери в инверторе необходимо полученную мощность потребителей умножить на 1,2. Такие приборы, как холодильник, компрессор в момент пуска потребляют мощность в 5-6 раз больше паспортной, поэтому инвертор должен кратковременно выдерживать мощность в 2-3 раза выше номинальной мощности. Если потребителей с высокой мощностью достаточно много, но работают они очень редко, это может привести к тому, что у нас получится система с огромной выходной мощностью инвертора, как результат, очень дорогого. Тогда необходимо предусмотреть, чтоб не происходило одновременного включения таких приборов, это удешевит систему.

Нагрузка переменного тока

Мощность, Вт

Кол-во часов работы в день

Энергопотребление в день, Вт·ч

Средний месячный уровень солнечной радиации в городах Украины (кВт/ч/м.кв./день)

Среднее значение за последние 22 года

Средн годовое значение

Киев, широта 50.5 N, Долгота 30.5 E

Львов, Широта 49.5 N, Долгота 24 E

Харьков, Широта 49.59 N, Долгота 46.13 E

Одеса, Широта 46.30 N, Долгота 30.46 E

Тернополь, Широта 49.33 N, Долгота 25.5 E

Ялта, Широта 44.29 N, Долгота 34.9 E

Ужгород, Широта 48.37 N, Долгота 22.18 E

Хмельницкий, Широта 49.25 N, Долгота 27.00 E

Днепропетровск, Широта 48.36 N, Долгота 34.58 E

С помощью первого значения фотоэлектрическую систему можно рассчитать в соответствии со среднегодовой солнечной радиацией, то есть в некоторые месяцы будет больше энергии, чем требуется, а в другие – меньше. Если вы руководствуетесь второй цифрой, у вас всегда будет как минимум достаточно энергии для удовлетворения ваших потребностей, кроме разве что чрезвычайно продолжительных периодов плохой погоды.

Теперь можно подсчитать номинальную мощность фотоэлектрического модуля.

Взяв из таблиц значение солнечной радиации за интересующий нас период и разделив его на 1000, получим так называемое количество пикочасов, т.е., условное время, в течении которого солнце светит как бы с интенсивностью 1000 Вт/м2.

Модуль мощностью Рw в течении выбранного периода выработает следующее количество энергии: W = k Pw E / 1000, где Е – значение инсоляции за выбранный период, k- коэффициент равный 0,5 летом и 0,7 в зимний период. Он делает поправку на потерю мощности солнечных элементов при нагреве на солнце, а также учитывает наклонное падение лучей на поверхность модулей в течении дня. Разница в его значении зимой и летом обусловлена меньшим нагревом элементов в зимний период.

Исходя из суммарной мощности потребляемой энергии и приведенной выше формулы – легко рассчитать суммарную мощность модулей. А зная ее, простым делением ее на мощность одного модуля, получим количество модулей.

Используя фотомодули разной мощности – 50 Вт, 70 Вт, 80 Вт, 100 Вт, 150 Вт и т.д,, можно построить генератор с необходимой нам установленной мощностью. Если потребность в энергии составляет, например, 84 Вт, лучше всего ей соответствует система из двух модулей по 50 Вт. Если же общая мощность модулей сильно отличается от вашей расчетной величины, придется пользоваться либо недостаточно мощным, либо слишком мощным генератором. В первом случае солнечная батарея не сможет удовлетворить общую потребность в энергии. Вам решать, устроит ли вас частичное обеспечение ваших потребностей. Во втором случае у вас будет избыток электроэнергии.

Определение емкости аккумуляторной батареи зависит от потребности в энергии и от количества фотоэлектрических модулей – от зарядного тока. Так как в подавляющем большинстве случаев используются свинцовые батареи, изготовленные по разным технологиям – AGM, gel, то для них оптимальным является 10% зарядный ток. В примере с ФМ 90 Вт минимальная емкость батареи составит 60 ампер-час (А·ч), а оптимальная – 100 А·ч. Такая батарея сможет сохранять 1200 Вт·ч при 12 В. Этого достаточно для электроснабжения, когда дневное потребление энергии составляет 280 Вт·ч.

В прошлом почти во всех фотоэлектрических системах использовалось постоянное напряжение 12 В. Широко применялись приборы на 12 В, питавшиеся прямо от батареи. Теперь, с появлением эффективных и надежных инверторов, все чаще в аккумуляторах используется напряжение 24 и 48 В. В настоящее время напряжение электрической системы определяется дневным поступлением энергии в течение дня. Системы, производящие и потребляющие менее 1000…1500 Вт·ч в день, лучше всего сочетаются с напряжением в 12 В. Системы, производящие 1000–3000 Вт·ч в день, обычно используют напряжение 24 В. Системы, производящие более 3000 Вт·ч в день, используют 48 В.

Напряжение в системе – это очень важный фактор, который влияет на параметры инвертора, средств управления, зарядного устройства и электропроводки. Однажды купив все эти компоненты, их трудно заменить. Некоторые компоненты системы, например, фотомодули, можно переключить с 12 В на более высокое напряжение, другие – инвертор, проводка и средства контроля – предназначены для определенного напряжения и могут работать только в его рамках.

В аккумуляторе накапливается энергия, выработанная солнечным модулем. В качестве компонента домашней солнечной энергетической установки, аккумулятор выполняет три задачи: * Покрывает пиковую нагрузку, которую не могут покрыть сами фотоэлектрические модули (резервный запас). * Дает энергию в ночное время (кратковременное хранение). * Компенсирует периоды плохой погоды или слишком высокого энергопотребления (среднесрочное хранение).

Читайте также:
Правила утепления пластиковых и деревянных окон

Наиболее доступные по цене и имеющиеся во всем мире, автомобильные аккумуляторы. Однако они предназначены для передачи большого тока в течение короткого промежутка времени. Они плохо выдерживают продолжительные циклы зарядки-разрядки, типичные для солнечных систем, а так же имеют достаточно высокий саморазряд. Промышленность выпускает разнообразные аккумуляторные батареи для систем резервного питания, в том числе т.н. солнечные аккумуляторы, которые отвечают данным требованиям. Их главная особенность – низкая чувствительность к работе в циклическом режиме и низкий саморазряд.

Для большой фотоэлектрической системы емкости одного аккумулятора может оказаться недостаточно. Тогда можно параллельно подключить несколько аккумуляторов, соединив все положительные и все отрицательные полюса между собой. При зарядке аккумулятор выделяет потенциально взрывоопасные газы. Поэтому нужно остерегаться открытого огня. Однако выделение газов незначительное, особенно если используется регулятор заряда; так что риск не превышает обычного, связанного с использованием аккумулятора в автомашине. И все же аккумуляторы нуждаются в хорошей вентиляции. Поэтому не стоит накрывать их и прятать в ящики.

Емкость аккумулятора указывается в ампер-часах. К примеру, аккумулятор на 100 А·ч и 12 В может сохранять 1200 Вт·ч (12 В x 100 А·ч). Однако емкость зависит от продолжительности процесса зарядки или разрядки. Период подзарядки указывают как индекс емкости C, например, “C10” для 10 часов. Отметим, что производители могут изготавливать аккумуляторы для разных базовых периодов разряда.

При хранении энергии в аккумуляторе определенное ее количество в процессе преобразования и хранения теряется. Эффективность автомобильных батарей составляет около 75%, тогда как специализированные аккумуляторы имеют несколько лучшие показатели – 80…85%. Так же со временем теряется часть емкости аккумулятора при каждом цикле заряд-разряд, пока не снижается настолько, что его приходится заменять. Специализированные аккумуляторы для систем резервного питания служат значительно дольше, чем мощные автомобильные, срок службы которых составляет всего 2-3 года против 8-10.

Важно, чтобы размер батареи позволял хранить энергию как минимум в течение 4 дней. Представим себе систему, которая потребляет 2400 Вт·ч в день. Разделив эту цифру на напряжение 12 вольт, получим дневное потребление 200 А·ч. Значит, 4 дня хранения равняются: 4 дня x 200 А·ч в день, равно 800 А·ч. Если используется свинцовая батарея, к этой цифре нужно прибавить 20%, а лучше 30…50%, чтобы аккумулятор никогда не разряжался полностью. Значит, емкость нашего идеального свинцового аккумулятора составляет минимально 1000 А·ч. Если же используется кадмиево-никелевая или железо-никелевая батарея, дополнительные 20…50% емкости не требуются, т.к. щелочным аккумуляторам не вредит регулярная полная разрядка. Также при выборе АКБ мы не рассматривали влияние температуры внешней среды (особенно отрицательных температур) на емкость аккумуляторов, что немного бы усложнило расчеты, но как показывает практика обычно АКБ размещают в отапливаемом помещении и соответственно поправка на температуру не существенна.

Внимание: Аккумуляторные батареи должны быть одного производителя, одной емкости, с одинаковым сроком изготовления – с одной партии поставки.

Аккумулятор прослужит весь свой заявленный срок только в том случае, если он используется вместе с качественным контроллером заряда, который защищает батарею от чрезмерной зарядки и глубокой разрядки. Если батарея полностью заряжена, регулятор снижает уровень тока, вырабатываемого солнечным модулем до величины, компенсирующей саморазряд. И наоборот, регулятор прерывает поставку энергии на потребляющие приборы, когда аккумулятор разряжается до критического уровня. Таким образом, внезапное прекращение энергоснабжения может быть вызвано не поломкой в системе, а результатом действия этого защитного механизма.

Контроллеры заряда – электронные устройства, которые оборудованы предохранителями для предотвращения повреждения регулятора и других компонентов системы. Среди них – предохранители против короткого замыкания и изменения полярности (когда перепутаны полюса «+» и «-»), блокировочный диод, который препятствует разрядке батареи в ночное время. Так же они оборудованы разнообразными индикаторами – светодиодами, более продвинутые модели – LCD-дисплеями, которые отмечают состояние работы, режимы и поломки системы. В некоторых моделях отмечается уровень зарядки батареи, хотя его весьма трудно определить с точностью.

Инвертор превращает постоянный ток низкого напряжения в стандартный переменный (220 В, 50 Гц). Инверторы бывают от 250 Вт до свыше 8000 Вт. Инверторы мощностью 3000 Вт и выше зачастую способны работать до нескольких шт. в параллельном подключении, увеличивая общую выходную мощность в соответствующее количество раз. Так же их можно объединять для построения 3-фазной сети. Электричество, вырабатываемое современными синусоидальными инверторами, отличается лучшим качеством, чем то, которое поступает к вам домой из местной энергосистемы. Существуют также “модифицированные” синусоидальные инверторы – они не так дороги, но при этом пригодны для большинства домашних задач. Они могут создавать небольшие помехи, “шум” в электронном оборудовании и телефонах. Инвертор также может служить “буфером” между домом и коммунальной энергосистемой, позволяя продавать избыток электроэнергии в общую электросеть.

При совместной работе фотоэлектрические системы и другие генераторы электроэнергии могут удовлетворять более разнообразный спрос на электричество с большим удобством и при меньших затратах, чем по отдельности. Когда электричество нужно непрерывно или возникают периоды, когда его нужно больше, чем может выработать одна только фотобатарея, ее может эффективно дополнить генератор. В дневные часы фотоэлектрические модули удовлетворяют дневную потребность в энергии и заряжают аккумулятор. Когда аккумулятор разряжается, дизель-генератор (либо бензиновый, или газовый) включается и работает до тех пор, пока батареи не подзарядятся. В некоторых системах генератор восполняет недостаток энергии, когда потребление электричества превышает общую мощность фотомодулей и аккумуляторов. Системы, в которых используются разнотипные электрогенераторы, объединяют в себе преимущества каждого из них. Двигатель-генератор вырабатывает электричество в любое время суток. Таким образом, он представляет собой резервный источник питания для дублирования фотоэлектрических модулей, зависящих от погоды. С другой стороны, фотоэлектрический модуль работает бесшумно, не требует ухода и не выбрасывает в атмосферу загрязняющие вещества. Комбинированное использование фотоэлементов и генераторов способно снизить первоначальную стоимость системы. Если резервной установки нет, фотоэлектрические модули и аккумуляторы должны быть достаточно большими, чтобы обеспечивать питание ночью.

Читайте также:
Практика применения обоев под покраску на кухне

Однако, использование двигателя-генератора в качестве резерва означает, что для обеспечения потребности в электричестве требуется меньшее количество фотоэлектрических модулей и батарей. Присутствие генератора делает проект системы более сложным, но управлять ею все равно достаточно легко. На самом деле современное электронное управление инверторов позволяет этим системам работать в автоматическом режиме. Инверторы можно запрограммировать на автоматическое переключение либо на генератор, либо на подзарядку батарей, либо комбинацию этих функций. Кроме двигателя-генератора, можно использовать электричество от ветроустановки, малой ГЭС или от другого источника, формируя, таким образом, гибридную электростанцию необходимого размера.

Лучший способ избежать ненужных потерь – использование соответствующих электрических кабелей и правильное их подключение к приборам. Кабель должен быть максимально коротким. Провода, соединяющие различные приборы, должны иметь площадь поперечного сечения не менее 4…6 мм2. Чтобы падение напряжения не превышало 3%, кабель между солнечным модулем и аккумулятором должен иметь поперечное сечение 0,35 мм2 (12-вольтная система) или 0,17 мм2 (24 В) на 1 метр на один модуль. То есть, кабель длиной 10 м для двух модулей должен быть не тоньше: 10 x 2 x 0,35 мм2 = 7 мм2. Поскольку с кабелем больше 10 мм2 в сечении трудно обращаться, иногда приходится смириться с более высокими потерями. Если часть кабеля пролегает под открытым небом, он должен быть устойчивым к плохим погодным условиям. Очень важна также его устойчивость к ультрафиолетовому излучению.

Фотоэлектрические модули работают лучше всего тогда, когда фотоэлементы расположены перпендикулярно солнечным лучам. Слежение за Солнцем может привести к увеличению ежегодного производства энергии на 10% зимой и на 40% летом по сравнению с неподвижно закрепленным фотоэлектрическим модулем. “Слежение” реализуется с помощью монтажа солнечного модуля на подвижной платформе, поворачивающейся за Солнцем. Прежде всего, нужно сопоставить преимущество лишней энергии, полученной благодаря слежению за Солнцем, со стоимостью монтажа и техобслуживания системы слежения.

Устройства слежения недешевы. Во многих странах не имеет экономического смысла устанавливать слежение за Солнцем для менее чем восьми солнечных панелей (например, в США). При использовании восьми фотоэлектрических модулей мы получим больше энергии, если потратим деньги на увеличение числа панелей, а не на установку слежения. Только при восьми и более панелях устройство слежения окупится. У этого правила есть и исключения: к примеру, когда фотоэлектрические панели напрямую питают водяной насос, без аккумулятора, – тогда слежение за Солнцем выгодно для двух и более модулей. Это связано с техническими характеристиками, например, с максимальным напряжением, необходимым для питания двигателя насоса.

Очень важным фактором экономического анализа является срок эксплуатации фотоэлектрической системы. Сроки службы разных компонентов солнечного энергоснабжения подсчитаны на основе опыта, накопленного за последние годы. * Срок службы фотоэлектрических панелей без заметного снижения КПД оценивается в 20…25 лет. * Каркасы и крепления из алюминия и нержавеющей стали (используются в большинстве фотоэлектрических систем) – срок службы не ниже фотоэлектрических модулей. * Аккумулятор. В зависимости от характера цикла заряд/разряд, либо буферный режим работы (разряд не более, чем на 30%), средний срок службы составляет от 4 до 10..12 лет. * Контроллеры заряда аккумуляторов рассчитаны по меньшей мере на 10 – 15 лет безремонтной эксплуатации. * Инверторы обычно служат не менее 10 – 15 лет. Многие производители дают гарантийный срок эксплуатации 5 лет

Примерные данные для калькуляции цен на фотоэлектрические системы:

Стоимость 1 Вт. мощности системы примерно составляет 2,5…3 €, в зависимости от используемых комплектующих – фотомодулей, аккумуляторных батарей, инверторов.

Расчет солнечной электростанции для дома

Вопрос получения электроэнергии альтернативными способами достаточно актуален в наше время. Одним из вариантов обеспечения электроснабжения дома является установка солнечной электростанции. Такой вариант может использоваться в качестве дополнительного альтернативного источника электричества либо в качестве основного, если стоит задача электроснабжения дома при отсутствии возможности подключения к электрическим сетям, например, по причине их удаленности.

Первый этап реализации данной идеи – это расчет будущей солнечной электростанции. В данной статье приведем рекомендации, которые помогут правильно рассчитать требуемую мощность будущей солнечной электростанции и правильно оценить возможность реализации данной идеи в зависимости от различных факторов.

Исходные данные

Прежде всего, необходимо определиться, какие задачи должна выполнить будущая электростанция. Самый важный вопрос – это наличие централизованного электроснабжения и его надежность.

Первый вариант

Дом подключен к электрическим сетям, но электроснабжение ненадежное и существует проблема частого отключения электричества. В данном случае необходимо определиться, какие задачи должна выполнять домашняя солнечная электростанция.

Если перерывы в электроснабжении непродолжительные, то задача альтернативного источника электроэнергии – обеспечить питание наиболее важных электроприборов.

Необходимо проанализировать какие электроприборы будут эксплуатироваться в период отключения электричества, и записать их мощность и время работы для проведения дальнейших расчетов.

Второй вариант

Те же исходные данные, что и в первом варианте, но перерывы в электроснабжении продолжительные и требуется реализовать резервный источник электроснабжения, питающий все необходимые бытовые электроприборы, которые ежедневно эксплуатируются в доме. Также записываем мощность и продолжительность работы электроприборов.

Третий вариант

Дом не имеет подключения к электрическим сетям и возможность подключения по той или иной причине отсутствует. В данном случае солнечная электростанция будет выступать в роли основного источника электроснабжения дома.

Если вопрос электроснабжения дома решается впервые, то необходимо продумать, какие электроприборы планируется эксплуатировать в доме и выбрать их мощность, руководствуясь принципом экономии, то есть выбирать минимальную мощность, так как стоимость солнечной электростанции напрямую зависит от ее мощности.

Реализация идеи солнечной электростанции достаточно затратная, поэтому необходимо очень ответственно подойти к вопросу расчета будущих нагрузок и продумать все возможные варианты.

Расчет нагрузок электроприборов

При расчете нагрузок электроприборов необходимо отдельно рассматривать каждый из электроприборов, анализируя все возможные нюансы его эксплуатации.

Сразу необходимо отсеять все электроприборы, функции которых можно реализовать другим способом, без использования электроэнергии.

Перечислим электроприборы, которые нецелесообразно запитывать от солнечной электростанции и соответствующую им альтернативную замену:

электропечь, электрочайник, электрические обогреватели. Если в доме для приготовления пищи используется электропечь, то на случай отключения электричества можно построить твердотопливную печь, на которой можно будет готовить пищу, греть воду, а также эксплуатировать ее для обогрева дома. В качестве запасного варианта можно приобрести газовую плитку с баллоном;

электрический водонагреватель. Альтернативный вариант – солнечный водонагреватель либо реализация подогрева воды от печи; – колодезный водяной насос. На случай отключений электричества должна быть предусмотрена возможность ручного забора воды из колодца. В случае отсутствия подключения к электросетям для удобства повседневной эксплуатации можно включить насос в перечень нагрузок, которые будут питаться от будущей электростанции;

крупорушка, мельница и другие приспособления, используемые при ведении хозяйства в доме. В данном случае можно отдать предпочтение ручным приспособлениям.

Отдельно следует сказать об освещении дома. При наличии централизованного электроснабжения для повседневной эксплуатации выбирается любой тип ламп, исходя из личных предпочтений. А для автономного электроснабжения необходимо отдать предпочтение наиболее экономичным типам ламп из имеющегося ассортимента – то есть светодиодным. Необходимо выбрать оптимальное количество ламп и их мощность, чтобы обеспечить желаемый уровень освещенности в том или ином месте.

В доме есть электроприборы и устройства, которые имеют большую мощность, но эксплуатируются редко. Учитывать мощность данных электроприборов при проектировании солнечной электростанции нецелесообразно, так как стоимость электростанции значительно увеличится, а в основном данная мощность не будет использована. К таким приборам можно отнести сварочный аппарат, электрифицированный инструмент (углошлифовальная машина, перфоратор, обрабатывающие станки и т.д.).

В случае отсутствия централизованного электроснабжения для эксплуатации таких электроприборов целесообразнее приобрести дизельный (бензиновый) генератор. Наличие в доме генератора дает преимущество в том, что если солнечные панели не зарядили аккумуляторную батарею, то пополнить нехватку заряда можно посредством включения генератора.

Для большей эффективности, надежности и нагрузочной способности автономное электроснабжение дома целесообразнее реализовать с применением двух альтернативных источников – солнечных панелей и ветрогенераторов.

Наличие ветрогенераторов позволяет увеличить суммарную мощность автономного электроснабжения и, возможно все электроприборы, в том числе и мощные можно будет эксплуатировать без необходимости применения генератора. В любом случае необходимо рассматривать вариант комбинирования двух источников альтернативной электроэнергии, не отдавая предпочтение лишь одному из вариантов.

Подробный пример расчета общего потребления электроэнергии и подбора оборудования для домашней солнченой электростанции смотрите в статьях Бориса Цупило:

Расчет требуемой мощности электростанции

Второй важный параметр – нагрузочная способность электростанции, то есть максимальная величина мощности, которую может выдавать солнечная электростанция.

При расчете нагрузок электроприборов необходимо проанализировать, какие электроприборы будут работать одновременно, и какая максимальная мощность потребуется для их питания в пики нагрузки. При этом желательно продумать эксплуатацию электроприборов таким образом, чтобы не было резких перепадов нагрузок.

Также необходимо учитывать особенности работы некоторых электроприборов. Например, нужно учесть пусковые токи компрессора холодильника и электродвигателей различных электроприборов.

Лимит выдаваемой мощности электростанцией ограничивает инвертор – устройство, которое осуществляет преобразование постоянного тока аккумуляторной батареи в переменный ток бытовой сети 220 В.

Рассчитывая мощность инвертора, следует учитывать также характеристики аккумуляторной батареи, которая накапливает электроэнергию, вырабатываемую солнечными панелями. В данном случае идет речь о максимально допустимых токах разряда аккумуляторной батареи.

Для защиты инвертора солнечной электростанции от сверхтоков, в частности перегрузки используется автоматический выключатель. Для контроля и ограничения нагрузок можно использовать реле приоритета нагрузок. Бытовые электроприборы разделяются на несколько групп по степени важности (приоритету), устанавливается нагрузочный лимит.

В процессе эксплуатации электроприборов реле приоритета нагрузок будет контролировать значение нагрузки в реальном времени, и в случае превышения установленного лимита будет отключать часть нагрузки с меньшим приоритетом, предотвратив отключение автоматического выключателя и соответственно обесточивание наиболее важных электроприборов.

Расчет мощности солнечных панелей

Солнечная электростанция вырабатывает электрическую энергию только в светлое время суток, при наличии достаточного светового потока. Солнечные панели должны иметь такую мощность, чтобы они смогли накопить в аккумуляторных батареях такое количество электрической энергии, которое обеспечит питание всех бытовых электроприборов в течение суток.

Существуют справочники уровня солнечной радиации и солнечной инсоляции для каждого региона – обычно такие данные предоставляют реализаторы солнечных панелей. Уровень солнечной радиации показывает примерное количество генерируемой электроэнергии солнечными панелями в разное время года. Показатель солнечной инсоляции позволяет учесть возможные ухудшения погодных условий и получить более точное значение вырабатываемой мощности солнечными элементами.

Необходимо учитывать, что справочные данные являются ориентировочными и не всегда соответствуют фактическим характеристикам работы солнечных панелей.

При построении домашней солнечной электростанции необходимо предусматривать возможность увеличения ее мощности в будущем посредством подключения дополнительных солнечных панелей и аккумуляторов для накапливания генерируемой электроэнергии.

Как и упоминалось выше, необходимо проанализировать актуальность применения другого источника альтернативной электроэнергии для того, чтобы обеспечить достаточный запас мощности автономного электроснабжения дома с учетом всех возможных факторов.

Исходя из мощности солнечных панелей, выбирается контроллер, посредством которого осуществляется отдача генерируемой электроэнергии в аккумуляторную батарею.

Очень важным критерием является наличие средств на реализацию автономного источника электроснабжения дома. Поэтому при выборе тех или иных элементов необходимо корректировать свой выбор исходя из имеющегося бюджета.

Как рассчитать солнечную электростанцию и выбрать оборудование для нее?

Как рассчитать солнечную электростанцию и выбрать оборудование для нее? Очень просто!

Как рассчитать солнечную электростанцию и выбрать оборудование для нее

Расчет небольших солнечных электростанций можно сделать достаточно просто вооружившись листом бумаги и ручкой. В этой статье мы расскажем основные принципы подбора оборудования для бытовых солнечных электростанций.

ВАЖНО: комплектация солнечной системы никак не связана с площадью дома. Она зависит только от мощности подключаемого оборудования и количества потребляемой энергии.

Основными элементами солнечной электростанции являются:

· Солнечные панели – они генерируют электроэнергию, и чем они мощнее и их больше, тем больше электроэнергии можно получить в течении дня.

· Аккумуляторные батареи – в них происходит накопление элеткроэнергии, которую можно использовать в отсутствии солнца (ночью), когда выработки электричества на солнечных панелях нет.

· Контроллер заряда аккумулятора – это устройство, которое позволяет обеспечить правильные режимы заряда аккумулятора. Выбор этого устройства, как правило, чисто технический момент за исключением выбора типа контроллера MPPT или ШИМ. Иногда контроллер заряда может быть встроен в инвертор.

· Инвертор преобразователь напряжения – это устройство преобразует постоянный ток на аккумуляторах в переменный 220В, который используется во всех бытовых электроприборах. Мощность инвертора ограничивает максимальную мощность электропотребителей, которые могут быть подключены к системе.

Теперь подробно остановимся на каждом из этих элементов системы, для того, чтобы понять, какое именно оборудование и в каком количестве, нам потребуется.

Как выбрать инвертор – преобразователь напряжения

Подбор оборудования для системы начинается с выбора инвертора. Все инверторы делятся на 2 группы по форме выходного сигнала – чистый синус (форма сигнала в виде синусоиды) и модифицированный синус (форма сигнала в виде ступенек или трапеций). Если к системе будет подключаться любая индуктивная нагрузка: двигатели , компрессоры и т.д. то инвертор должен быть обязательно с чистым синусом на выходе. Т.е. если вы планируете подключать холодильник, насос, электроинструмент и т.д. то инвертор должен на выходе выдавать чистую синусоиду.

Если же подключаемая нагрузка это телевизоры, зарядные устройства, освещение и т.д. то модифицированный синус вполне подойдет.

Таким образом чистый синус имеет более широкую область применения, но и цена у него существенно дороже чем у инверторов с модифицированным синусом.

Итак, мы определили тип инвертора, который нам нужен, далее нужно определить его номинальную мощность. Для того, чтобы это сделать, нужно просуммировать мощность всех электроприборов которые могут быть включены одновременно. Мощность каждого прибора можно найти в инструкции или на самом устройстве. Например: холодильник (300Вт) + телевизор (70Вт) + насос (400Вт) + микроволновка (1000Вт) = 300Вт+70Вт+400Вт+1000Вт = 1770Вт. Соответственно в данном случае инвертор должен иметь номинальную мощность более 1770Вт. Кроме того важно понимать, что у некоторых приборов существуют пусковые токи, которые кратковременно появляются при запуске оборудования. Эти пусковые токи могут быть в 5-7 раз больше чем номинальные. Это важно учитывать при выборе инвертора. Благо у каждого инвертора есть запас прочности – пиковая нагрузка и зачастую эта характеристика в 2 раза больше номинальной мощности. Поэтому в данном примере инвертора номинальной мощностью 2000Вт хватит для обеспечения питанием указанных приборов, даже с учетом того, что у холодильника в момент пуска мощность может быть 300Вт*7=2100Вт.

Как рассчитать солнечные панели

Следующий вопрос – как рассчитать сколько солнечных батарей нужно установить, чтобы их было достаточно для обеспечения нужным количеством электроэнергии.

Прежде чем ответить на этот вопрос, давайте выясним, сколько же электроэнергии мы потребляем. Это можно сделать умножив мощность электроприборов на время их работы, например: лампочка мощностью 50Вт работая в течении 3х часов, израсходует 50вт*3ч=150Вт*ч электроэнергии. Таким образом, можно посчитать полное электропотребление за сутки, но есть и более простой способ – посмотреть показания электросчетчика за месяц и разделить на количество дней в месяце. К примеру: счетчик за месяц (30 дней) накрутил 150кВт*ч электроэнергии. В среднем за сутки получается 5кВт*ч электроэнергии. Это значит, что массив солнечных панелей должен за солнечный день успеть сгенерировать такое же количество электроэнергии.

Солнечные панели бывают различного размера и мощности, и в каждом конкретном случае бывает удобнее использовать панели определенного размера, но, как правило, для средних и больших систем используются панели 250-300Вт, поскольку они наиболее оптимальны с точки зрения монтажа. Мощность панели это как раз то количество электроэнергии, которая она вырабатывает при полной освещенности. Т.е. если на солнечную панель 250Вт в течении 3х часов под прямым углом будет светить солнце, то она выработает 250Вт*3ч=750Вт*ч электроэнергии. Конечно в течении дня может быть достаточно облачно и мало света, поэтому та же самая панель при облачной погоде может вырабатывать в 3-4 раза меньше электроэнергии чем в солнечную погоду. Таким образом для грубой оценки такой подход в расчетах может подойти. Например если нужна система, которая летом должна вырабатывать 5кВт*ч электроэнергии в день, при условии, что в среднем в течении 4х часов на панель будет светить солнце (4ч*250Вт=1000Вт), то нам понадобится не менее 5 таких панелей.

Для более точного расчета необходимо использовать так называемые таблицы солнечной инсоляции, в которых указаны средние значения солнечной освещенности на 1 кв.м. за сутки в разных регионах нашей страны. К примеру в Астрахани в июне на поверхность наклоненную на 35градусов к горизонту за месяц проникает 197.7 кВт*ч энергии. За сутки в среднем получится около 6.6кВт*ч энергии. Конечно, не вся эта энергия будет преобразована в электрическую. У каждого модуля есть КПД (коэффициент полезного действия, не путать с КПД ФЭПа), в среднем это 16.5-17%. Это значит что нужно 6.6 кВт*ч умножить на 17%, в результате чего получим 1.12кВт*ч в сутки с одного квадратного метра солнечных панелей. Зная нужное нам количество энергии в сутки, к примеру 5кВт*ч, мы можем определить нужную нам площадь солнечных панелей – 5кВт*ч/1.12кВт*ч=4.46м.кв. Солнечный модуль 250Вт имеет размеры 1650х990мм и площадь равную 1.64м.кв.. Таким образом 3х модулей по 250Вт будет достаточно для генерации 5кВт*ч электроэнергии в сутки на территории Астрахани в июне.

По такому принципу делаются профессиональные расчеты систем, поскольку нет более точных данных по работе солнечных панелей, чем статистические.

Сколько нужно аккумуляторов

Количество энергии которое может быть запасено в аккумуляторной батарее можно оценить по формуле «емкость умножить на номинальное напряжение». Например аккумулятор емкостью 100Ач и напряжением 12В, может запасти в себе 100Ач*12В=1200Вт*ч электроэнергии.

Зная, сколько энергии у нас расходуется в сутки, мы можем определить какая часть этой энергии расходуется из аккумуляторов в отсутствии солнца. Но поскольку срок службы аккумуляторов на прямую зависит от глубины его разряда, и не рекомендуется разряжать аккумуляторы ниже 50%, мы рекомендуем делать расчет аккумуляторов исходя из суточного потребления, например в сутки потребляется 5кВт*ч, это 5000Вт*ч. Разделив потребление на 12В, получим требуемую емкость банка аккумуляторов 5000Вт*ч/12В=416Ач. Т.е. 4 аккумулятора по 100Ач гарантированно не разрядятся полностью в течении дня, что позволит увеличить срок их службы, а также обеспечат необходимым количеством электроэнергии в отсутствии солнца – ночью.

Как выбрать контроллер заряда аккумулятора и что это такое можно прочитать по адресу: http://oporasolar.ru/articles/11066-kontrollery-zaryada . В этой статье мы не будем останавливаться на данном этапе.

Зима-Лето

Зимой солнца сильно меньше чем летом, поэтому если вы хотите полностью автономную систему, то все расчеты необходимо делать основываюсь на минимальных значениях солнечной инсоляции, которые, как правило наблюдаются в декабре-январе. Так вы гарантированно обеспечите себе автономное питание в течении года. К примеру в той же Астрахани, значение солнечной инсоляции в декабре в 4 раза меньше чем в июне, поэтому для автономной работы системы зимой, потребуется в 4 раза больше солнечных панелей.

Наличие внешней сети или генератора

Если у вас есть возможность подключиться к сети или генератору, то это позволит не покупать большое количество солнечных панелей, для обеспечения питанием в зимнее время. При длительном отсутствии солнца можно включить сеть или генератор для зарядки аккумуляторов не небольшой период времени до полной зарядки, и продолжать получать энергию от солнца.

На сегодняшний день есть большое количество инверторов со встроенным зарядным устройством аккумуляторов, вплоть до автоматического переключения на питание от сети в случае сильного разряда аккумуляторных батарей. Такие инверторы наиболее удобны в использовании и достаточно просты в подключении.

Таким образом, мы разобрались как можно сделать расчет солнечной электростанции, а если у вас остались вопросы вы можете позвонить нам и мы поможем вам разобраться!

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: