Плита ДСП: расшифровка, технология производства, виды, плотность и вес (фото ЛДСП)

Плита ДСП: расшифровка, технология производства, виды, плотность и вес (фото ЛДСП)

«Анатомия Сна» – журнал о стильной жизни в спальне и здоровом сне. Каждый день вы найдете здесь интересную историю, важный совет и полезное интервью. Вместе с авторами разберетесь, как выбрать матрасы и подушки из тысяч товаров, какие аксессуары идеальны для спальни, как своими собрать кровать или сшить балдахин, увидите «начинку» ортопедических изделий для сна, познакомитесь с экспертами и мастерами. Журнал «Анатомия Сна» является брендовым медиа онлайн-магазина «Анатомия Сна». Одного из крупнейших маркетов популярных отечественных и зарубежных производителей матрасов, кроватей, мебели и аксессуаров для сна в России.

Напишите нам

Содержание

Перед покупкой мебели всегда встает резонный вопрос, какому материалу отдать предпочтение. ДСП, ЛДСП, МДФ – самые востребованные материалы в мебельном производстве, но вместе с тем и самые «провокационные», порождающие в обществе дискуссии на тему безопасности. Есть ли основания сомневаться в безопасности древесно-стружечных плит, или все это байки, порожденные незнанием? Давайте поближе познакомимся с этими «страшными» плиточными материалами.

Считается, что история создания древесно-стружечной плиты (ДСП) имеет немецкие корни. А родителем ДСП нередко называют Эрнста Хаббарда, создавшего в 1887 году «искусственное дерево» из опилок и специального клея на альбуминовой основе, который затвердевал под действием температуры и давления. Однако если углубиться дальше, то история гораздо богаче: первые аналоги ДСП были созданы еще до нашей эры в древнем Китае. Жители Поднебесной смешивали кору дерева, ветошь и лык с водой, затем высушивали массу на бамбуковой сетке и прессовали гладким камнем, получая в итоге прочную плиту. Правда, тогда она нужна была только для письма. С течением времени технология создания ДСП совершенствовалась. Чем прочнее становились плиты из опилок, тем шире становился их функционал.

Современное производство и применение

До сих пор сырьем для получения ДСП является стружка: ее толщина составляет 0,5 мм, ширина может достигать 5 мм, а длина – 40 мм. Чем мельче будет стружка, тем качественнее будет плита. Производство ДСП проходит в несколько этапов. Сначала подготавливается сырье: необходимо, чтобы верхние слои состояли из самой мелкой стружки, а те, что крупнее, размещались в центре. Поэтому после тщательной просушки стружка подвергается калибровке.

После этого сырье направляется в непрерывно работающие смесители, где происходит соединение стружки со связующими веществами. Вязкую массу отправляют в аппарат, который формирует «ковер» с одним, двумя или тремя слоями. Далее «ковер» прессуют под давлением 30-40 кг на квадратный сантиметр и «выпекают» при температуре 180-220°С. В завершение плиты охлаждают, нарезают и отправляют на хранение.

Древесно-стружечная плита активно используется в отделочных работах, для обшивки стен, устройства полов, изготовления дверей, подоконников и т.п. Начиная со второй половины 20 века основной областью применения ДСП стала мебельная промышленность. Забавно, но в те времена, когда производственный процесс был гораздо сложнее современного, стоимость мебели из ДСП была намного выше, чем из массива дерева, поэтому ее могли позволить себе только обеспеченные люди. Современная мебель из ДСП куда более доступна по цене.

Плюсы и минусы ДСП

Несложное производство и простота обработки делает ДСП прекрасным материалом для изготовления мебели. При соблюдении всех условий эксплуатации изделия из этих плит получаются долговечными и износостойкими, они длительное время сохраняют свой привлекательный вид. Мебель из ДСП имеет довольно легкий вес, что упрощает ее транспортировку.

К минусам ДСП относят потенциальную токсичность из-за наличия смолистых веществ в составе. Однако в «белом» производстве мебели используются только безопасные материалы, которые не способны причинить вреда здоровью. Обязательно попросите продавца предоставить сертификаты, подтверждающие безопасность продукции и ее причастность к классам эмиссии (количество выделяемого формальдегида) Е0,5 или Е1.

Еще один недостаток ДСП – неподатливость материала, получить из него изящные изгибы просто невозможно. А главный минус – это водопроницаемость. Древесно-стружечная плита хорошо впитывает влагу. Разбухая, она может увеличиться в объеме почти на треть.

Как ухаживать

Мебель из ДСП неприхотлива. Очистку от пыли стоит производить с помощью сухой тряпки, а сильные загрязнения можно протирать смоченной в мыльном растворе и хорошо отжатой салфеткой. После влажного очищения поверхность обязательно нужно протереть насухо.

Не стоит устанавливать изделия из ДСП вблизи отопительных приборов, так как это ведет к рассыханию материала.

Для ванной комнаты или открытой веранды ДСП-мебель не подходит: повышенная влажность ей противопоказана.

Читайте также:
Преимущества и недостатки самозажимных и винтовых клеммников

Технология производства ламинированной древесно-стружечной плиты идентична ДСП, просто на финальном этапе внешние стороны плиты дополнительно покрывают ламинатом. В качестве последнего может выступать бумажно-смоляная пленка, бумажно-слоистый материал либо пластик. ЛДСП благодаря облицовке приобретает внешнюю привлекательность. Но красота не главное достоинство плиты – красивое покрытие делает ЛДСП влагоустойчивым и более крепким материалом.

Внешняя привлекательность, влагоустойчивость и общая прочность структуры делает ЛДСП одним из самых популярных материалов в мебельном производстве, именно из него изготавливается большая часть всех шкафов, столов, кроватей, тумбочек и комодов. На сайте интернет-магазина «Анатомия сна» вы можете найти широкий ассортимент мебели из ЛДСП по очень низким ценам.

  • Кровати из ЛДСП
  • Комоды из ЛДСП
  • Тумбочки из ЛДСП

Стереотипные заблуждения об ЛДСП

Байки о вреде ЛДСП для здоровья гуляют давно. Их подкрепляют страшные мнения «экспертов интернета» на тему фенольных выделений. Они верны отчасти. Действительно, новая мебель из древесно-стружечных материалов может выделять формальдегид, но его количество настолько мало, что не причиняет вреда. Насторожить по-настоящему вас должны две вещи.

  1. Первая – если запах от мебели настолько сильный, что вынуждает открывать форточки для проветривания помещения.
  2. Вторая – если неприятное, хоть и легкое амбре продолжает исходить от вещей более 2-4 недель после распаковки.

Оба этих фактора свидетельствуют о том, что в производстве использовалось низкокачественное сырье, а готовое изделие действительно может стать угрозой для вашего здоровья.

Некоторые покупатели порой ошибочно полагают, что лучшей заменой плиточным материалам является натуральный массив. Дерево, безусловно, считается роскошным и дорогим сырьем, однако и оно может оказаться небезопасным по причине того же формальдегида, который содержится в натурпродукте. Кроме того, некоторые породы дерева, например, свежесрубленные дуб и бук, в процессе усушки имеют класс эмиссии Е2 – это выше, чем у качественных ДСП.

Как ухаживать

При минимальном и невыраженном запахе стоит проводить ежедневное проветривание квартиры на протяжении двух-четырех недель после монтажа мебели.

  • В уходе за мебелью из ЛДСП стоит избегать агрессивных абразивных средств, которые могут повредить поверхность изделия.
  • Влажную уборку можно проводить с помощью слегка влажной тряпки или специальной чистящей салфетки, затем поверхность мебели обязательно следует протереть насухо.
  • Нельзя ставить на поверхность из ЛДСП горячие предметы или проливать жидкости – это неизбежно приедет к порче изделия.

Древесноволокнистая плита высокой плотности, она же МДФ, появилась в результате случайного стечения обстоятельств. В 1925 году изобретатель Уильям Мейсон, близкий друг небезызвестного Томаса Эдисона, пытался найти достойное применение большому числу стружки и щепы, которые в огромном количестве выбрасывались лесопильными заводами. В своих экспериментах он пытался вдавить древесные волокна в изоляционные плиты. Однажды Уильям забыл отключить свое оборудование, которое состояло из паяльной лампы, старого автомобильного котла и печатного станка 18 века, и получил на выходе тонкий прочный лист. Довольный результатом Уильям Мейсон запатентовал свой способ, который в дальнейшем продолжали совершенствовать уже другие испытатели. В массовое производство МДФ в современном формате запустилось только в 1980-х в США. А в России первые станки по производству этого материала заработали в 1997 году.

Современное производство

Первые листы МДФ получали «мокрым» способом, который уже давно забыт. Современный «сухой» метод включает несколько этапов:

1. Подготовка и предварительная обработка сырья.

2. Сушка и укладка в «ковер».

3. Горячее прессование.

Связующим компонентом, который удерживает элементы стружки друг с другом, выступает вещество лигнин. Это натуральный полимер, содержащийся в древесных волокнах. Под воздействием высоких температур происходит активация лигнина, который и «склеивает» всю массу между собой. Для получения более плотных структур в производстве используют вспомогательные вещества из группы формальдегидов.

Учитывая особенности технологии, изделия из МДФ тоже выделяют свободный формальдегид, но, как мы уже выяснили выше, бояться этого не стоит. Свою продукцию заводы обязательно маркируют и выставляют классы эмиссии, отражающие количество выделяемого формальдегида. Безопасные классы Е0,5 и Е1 – выделяет до 5 мг и до 10 мг на 100 грамм сухой плиты – признаются пригодными для изготовления детской мебели.

Применение МДФ

Древесноволокнистая плита высокой плотности нередко применяется в декоративных целях. В качестве основного материала ее используют для создания красивых перегородок, для отделки потолков, пола и стен. МДФ используют и в строительстве. Но чаще этот материал задействуют в мебельной промышленности, где из него делают буквально все, от стульев до корпусных моделей. В ассортименте «Анатомия Сна» представлен большой выбор замечательных кроватей из МДФ, комодов, шкафов и даже зеркал.

Читайте также:
Световые панели на потолок: светильники для пластиковых, светодиодные для ПВХ, крепление встраеваемой, фото как закрепить точечные

Плюсы и минусы МДФ

У МДФ довольно много достоинств. Это прочный материал, устойчивый к воздействию влаги, но исключительно в формате влажной уборки. То есть ставить мебель из МДФ в ванной, например, не рекомендуется.

Благодаря прочным покрытиям и сложным веществам, входящим в состав МДФ, изделия из него имеют длительный срок службы (15-20 лет). Высокие показатели эластичности позволяют без особого труда создавать мебель с изящными изгибами и круглыми формами.

Минусов у МДФ немного:

  • вес – мебель из него достаточно тяжелая;
  • наличие выделяемого формальдегида (конечно же в безопасных объемах).

Как ухаживать

Для устранения пятен с поверхности рекомендуется использовать слабый мыльный раствор, разбавленный этиловый спирт либо моющие средства для окон. Очень важно не допускать длительного контакта спирта с поверхностью мебели, так как это может привести к набуханию защитной пленки. Для устранения пыли следует протирать мебель мягкой сухой тряпкой из сукна, плюша или фланели.

Для чистки МДФ с пленочным покрытием запрещено использовать:

  • абразивные вещества;
  • пар;
  • средства с силиконовыми маслами, восками, полиролями, щелочами и окисляющими компонентами.

Выбрать и купить качественную мебель из ДСП, ЛДСП и МДФ для спальни по приятной цене вы можете в интернет-магазине «Анатомия Сна». Все модели разделены на категории по типу, конструкции, материалам изготовления, стилям. Разобраться в обширном ассортименте помогут онлайн-консультанты магазина в чате на сайте или по телефону 8 (800) 777-62-81.

Регулирование однофазного асинхронного двигателя с помощью частотного преобразователя

    2 commentsПрименение 27 октября, 2016

С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями.

Управление и преобразование частоты в небольших по мощности однофазных асинхронных двигателях, запускаемых в работу с помощью конденсаторов, позволяет экономить электроэнергию и активирует режим энергосбережения на новом, прогрессивном уровне.

Принцип работы однофазной асинхронной машины

В основе работы асинхронного двигателя лежит взаимодействие вращающегося магнитного поля статора и токов, наводимых им в роторе двигателя. При разности частоты вращения пульсирующих магнитных полей возникает вращающий момент. Именно этим принципом руководствуются при регулировании скорости вращения асинхронного двигателя с помощью частотного преобразователя.

Электродвигатель по факту может считаться двухфазным, но у него только одна рабочая обмотка статора, вторая, расположенная относительно главной под углом в 90 о является пусковой.

Пусковая обмотка занимает в конструкции статора 1/3 пазов, на главную обмотку приходится 23 паза статора.

Ротор однофазного двигателя коротко замкнутый, помещенный в неподвижное магнитное поле статора, начинает вращаться.

Рис.№1 Схематический рисунок двигателя, демонстрирующий принцип работы однофазного асинхронного двигателя.

Основные виды однофазных электроприводов

Кондиционеры воздуха, холодильные компрессоры, электрические вентиляторы, обдувочные агрегаты, водяные, дренажные и фекальные насосы, моечные машины используют в своей конструкции асинхронный трехфазный двигатель.

Все типы частотников преобразуют переменное сетевое напряжение в постоянное напряжение. Служат для формирования однофазного напряжения с регулируемой частотой и заданной амплитудой для управления вращения асинхронных двигателей.

Управление скоростью вращения однофазных двигателей

Существует несколько способов регулирования скорости вращения однофазного двигателя.

  1. Управление скольжением двигателя или изменением напряжения. Способ актуален для агрегатов с вентиляторной нагрузкой, для него рекомендуется использовать двигатели с повышенной мощностью. Недостаток способа – нагрев обмоток двигателя.
  2. Ступенчатое регулирование скорости вращения двигателя с помощью автотрансформатора.

Рис.№2. Схема регулировки с помощью автотрансформатора.

Достоинства схемы – напряжение выхода имеет чистую синусоиду. Способность трансформатора к перегрузкам имеет большой запас по мощности.

Недостатки – автотрансформатор имеет большие габаритные размеры.

Использование тиристорного регулятора оборотов двигателя. Применяются тиристорные ключи, подключенные встречно-параллельно.

Рис. №3.Схема тиристорного регулирования однофазного асинхронного электродвигателя.

При использовании для регулирования скорости вращения однофазных асинхронных двигателей, чтобы избежать негативного влияния индукционной нагрузки производят модификацию схемы. Добавляют LRC-цепи для защиты силовых ключей, для корректировки волны напряжения используют конденсатор, минимальная мощность двигателя ограничивается, так гарантируется старт двигателя. Тиристор должен иметь ток выше тока электродвигателя.

Транзисторный регулятор напряжения

В схеме используется широтно-импульсная модуляция (ШИМ) с применением выходного каскада, построенного на использовании полевых или биполярных IGBT транзисторах.

Рис. №4. Схема использования ШИМ для регулирования однофазного асинхронного электродвигателя.

Частотное регулирование асинхронного однофазного электродвигателя считается основным способом регулирования частоты электродвигателя, мощности, эффективности использования, скорости и показателей энергосбережения.

Рис. №5. Схема управления электродвигателем без исключения из конструкции конденсатора.

Читайте также:
Пуццолановый портландцемент - что это?

Частотный преобразователь: виды, принцип действия, схемы подключения

Частотный преобразователь разрешает своему владельцу снизить энергопотребление и автоматизировать процессы в управлении оборудованием и производством.

Основные компоненты частотного преобразователя: выпрямитель, конденсатор, IGBT-транзисторы, собранные в выходной каскад.

Благодаря способности управлением параметрами выходной частоты и напряжения достигается хороший энергосберегающий эффект. Энергосбережение выражается в следующем:

  1. В двигателе поддерживается неизменный текущий момент ращения вала. Это обусловлено взаимодействием выходной частоты инверторного преобразователя с частотой вращения двигателя и соответственно, зависимостью напряжения и крутящего момента на валу двигателя. Значит, что преобразователь дает возможность автоматически регулировать напряжение на выходе при обнаружении превышающего норму значения напряжения с определенной рабочей частотой нужно для поддержания требуемого момента. Все инверторные преобразователи с векторным управлением имеют функцию поддержания постоянного вращающего момента на валу.
  2. Частотный преобразователь служит для регулировки действия насосных агрегатов (см. страницу). При получении сигнала, поступающего с датчика давления, частотник снижает производительность насосной установки. При снижении оборотов вращения двигателя уменьшается потребление выходного напряжения. Так, стандартное потребление воды насосом требует 50Гц промышленной частоты и 400В напряжения. Руководствуясь формулой мощности можно высчитать соотношение потребляемых мощностей.

Уменьшая частоту до 40Гц, уменьшается величина напряжения до 250В, означает, что уменьшается количество оборотов вращения насоса и потребление энергии снижается в 2,56 раз.

Рис. №6. Использование частотного преобразователя Speedrive для регулирования насосных агрегатов по систем CKEA MULTI 35.

Для повышения энергетической эффективности использования частотного преобразователя в управлении электродвигателем необходимо сделать следующее:

  • Частотный преобразователь должен соответствовать параметрам электродвигателя.
  • Частотник подбирается в соответствии с типом рабочего оборудования, для которого он предназначен. Так, частотник для насосов функционирует в соответствии с заложенными в программу параметрами для управления работой насоса.
  • Точные настройки параметров управления в ручном и автоматическом режиме.
  • Частотный преобразователь разрешает использовать режим энергосбережения.
  • Режим векторного регулирования позволяет произвести автоматическую настройку управления двигателем.

Преобразователь частоты однофазный

Компактное устройство преобразования частоты служит для управления однофазными электродвигателями для оборудования бытового предназначения. Большинство частотных преобразователей обладает следующими конструктивными возможностями:

  1. Большинство моделей использует в своей конструкции новейшие технологии векторного управления.
  2. Они обеспечивают улучшенный вращающий момент однофазного двигателя.
  3. Энергосбережение введено в автоматический режим.
  4. Некоторые модели частотных преобразователей используют съемный пульт управления.
  5. Встроенный PLC контроллер (он незаменим для создания устройств сбора и передачи данных, для создания систем телеметрии, объединяет устройства с различными протоколами и интерфейсами связи в общую сеть).
  6. Встроенный ПИД регулятор (контролирует и регулирует температуру, давление и технологические процессы).
  7. Напряжение выхода регулируется в автоматическом режиме.

Рис.№7. Современный преобразователь Optidrive с основными функциональными особенностями.

Важно: Однофазный преобразователь частоты, питаясь от однофазной сети напряжением 220В, выдает три линейных напряжения, величина каждого из них по 220В. То есть, линейное напряжение между 2 фазами находится в прямой зависимости от величины выходного напряжения самого частотника.

Частотный преобразователь не служит для двойного преобразования напряжения, благодаря наличию в конструкции ШИМ-регулятора, он может поднять величину напряжения не более чем на 10%.

Главная задача однофазного преобразователя частоты – обеспечить питание как одно- так и трехфазного электродвигателя. В этом случае ток двигателя будет соответствовать параметрам подключения от трехфазной сети, и оставаться постоянным

Частотное регулирование однофазных асинхронных электродвигателей

Первое на что обращаем внимание при выборе частотника для своего оборудования – это соответствие сетевого напряжения и номинального значения тока нагрузки, на который рассчитан двигатель. Способ подключения выбирается относительно рабочего тока.

Главным в схеме подключения является наличие фазосдвигающего конденсатора, он служит для сдвига напряжения, поступающего на пусковую обмотку. Она служит для пускового включения двигателя, иногда после того, как двигатель заработал, пусковая обмотка вместе с конденсатором отключается, иногда остается включенной.

Схема подключения однофазного двигателя с помощью однофазного частотного преобразователя без использования конденсатора

Выходное линейное напряжение устройства на каждой фазе равно выходному напряжению частотника, то есть на выходе будет три напряжения линии, каждое по 220В. Для запуска может использоваться только пусковая обмотка.

Рис. №8. Схема присоединения однофазного асинхронного двигателя через конденсатор

Фазосдвигающий конденсатор не может обеспечить равномерный фазовый сдвиг в пределах границ частот инвертора. Частотник обеспечит равномерный сдвиг фаз. Для того, чтобы исключить из схемы конденсатор, нужно:

  1. Конденсатор стартера С1 удаляется.
  2. Вывод обмотки двигателя присоединяем к точке выхода напряжения частотника (используется прямая проводка).
  3. Точка А присоединяется к СА; В соединяется с СВ; W соединяется к СС, таким образом электродвигатель присоединится напрямую.
  4. Для включения в обратном направлении (обратная проводка) необходимо В присоединить к СА; А присоединить к СВ; W соединить с СС.
Читайте также:
Проектируем современный интерьер гостиной: фотогалерея

Рис. №9. Схема подключения однофазного асинхронного двигателя без использования конденсатора.

На видео — Частотный преобразователь. Подключение трехфазного двигателя в однофазную сеть 220В.

Как подключить однофазный двигатель к преобразователю частоты?

Помимо распространенных 3-х фазных асинхронных двигателей, на рынке предлагают однофазные моторы. Чаще всего ими являются насосы и вентиляторы. Самые популярные агрегаты в промышленности и в быту. И тут возникает вопрос? Как же ими управлять и регулировать скорость. Способов великое множество. Но самый эффективный, это когда подключают преобразователь частоты для однофазного двигателя.

Из этой статьи вы узнаете:

Всем привет! С вами Гридин Семён, и в этом посте мы поговорим с вами о нюансах управления асинхронными однофазными двигателями. Какой способ управления лучше? Разберём такой вопрос — частотное управление двигателем более подробно.

Однофазный асинхронный двигатель

Наибольшее применение такие моторы нашли в быту и малом бизнесе. Они необходимы там, где нет трёхфазной сети. Мощность их ограничивается лишь частотой сети. Сами по себе аппараты маломощные, в диапазоне от 500 Ватт до 2 килоВатт.

Принцип работы однофазного двигателя заключается в смещении обмоток в пространстве относительно друг друга. Ключевым моментом является сдвиг фазы в обмотках на 120 градусов. Главным «фазосдвигателем» у нас является конденсатор. Как правило, он подключён последовательно в цепи статорной обмотки.

По конструкции моторы могут различаться. Так что, не к любому можно подключить преобразователь частоты, нужно обращать внимание прежде всего на схему подключения обмоток. Двухфазный двигатель с рабочей и пусковой обмоткой точно не сможет запуститься, совсем другой принцип работы. Мы к этому ещё вернёмся.

Способы подключения мотора

А теперь давайте рассмотрим несколько способов подключений:

  • конденсаторный способ;
  • частотный способ;
  • фазовое управление с помощью симистора;

Какой из способов лучше всего? Знаете, всё зависит от задачи, которую нужно решить. А так на вкус и цвет, сами знаете.

Если вы мало знакомы с преобразователем частоты, можете ознакомиться в статье «Чего вы не знаете о преобразователе частоты?»

Конденсаторный способ подключений

Бюджетное подключение трехфазных моторов к однофазной сети. Просто цепляем конденсатор последовательно в цепи обмотки и превращаем аппарат из трехфазного в однофазный. Вот схема:

Сп — пусковой конденсатор, а Ср — рабочий конденсатор. Как подбирать ёмкость в этом случае я расписывать не буду. В просторах интернета есть полно информации по этому поводу.

Фазовое управление с помощью симистора

Это один из самый старых способов управления. Две обмотки двигателя подключаются параллельно, одна из них с конденсатором. К точкам обмоток соединяем симисторный регулятор. Их актуальность, по-моему мнению, ещё не пропала. Лучше всего использовать для не тяжёлых нагрузок (вентиляторы, насосы).

Важно! Учитывайте, что сим. блоки в основном предназначены для активной нагрузки. Так как мотор — это индуктивная нагрузка, поэтому активный ток делим примерно на 10. Если ток активной нагрузки равен 50, то индуктивный будет 5.

На выходе устройства формируется напряжение сетевой частоты 50 Гц и настраивается среднеквадратичное число. Таким образом мы меняем время открытого состояния симистора за период следования напряжения. Единственный недостаток: момент на валу падает относительно снижения напряжения. Вот вам пример Autonics SPK1:

Входы для регулировки скорости универсальные. Сюда можно подключить и потенциометр 1 кОм, и датчик с токовым сигналом 4-20 мА, и напряжение 0-5 В.

Частотный способ

О популярности преобразователя частоты нет смысла говорить. Так как это устройство давно известно всем. Частотный способ является основным в нашем 21 веке. Скорость регулируется с помощью ШИМ-модуляции. Достаточно сложный девайс, требующий отдельной статьи. По входному напряжению существуют как и 380 В, так и 220В. Но что же получается по выходу?

На рынке есть готовые варианты и на однофазный, и на трёхфазный электродвигатель. Просто нужно подобрать схемное решение.

Но, бывают случаи когда ПЧ с однофазным выходом не по карману. Или у вас на полке лежит трёхфазный ПЧ. Давайте рассмотрим вариант подключения мотора к преобразователю частоты.

Подключение преобразователя частоты и однофазного двигателя

В такой схеме есть ряд существенных недостатков:

  1. Запуск двигателя происходит при минимальной частоте 30 Гц;
  2. Частоту ниже 30 Гц можно регулировать, но не рекомендуется, очень вредно для движка;
  3. Есть нюанс с настройкой пускового напряжения, требуется немного загрублять параметр;
Читайте также:
Сварка меди в домашних условиях угольным электродом

Для решения вопроса с подключением двух устройств поможет нам обычный дроссель. Катушка индуктивности поможет нам подавить ёмкость в схеме, таким образом давая возможность частотнику спокойно подавать синусоиду на движок. Да, вот схема:

Всё элементарно, правда. Видео, к сожалению не сохранилось. Выкладываю фото с ПЧ Eaton и однофазным насосом.

Производителей ПЧ в мире очень много. Поэтому из настроек я могу направить вас примерно и в общих чертах, если будут возникать проблемы с подключениями. Основная мысль заключается в том, что при пуске двигателя минимальное напряжение и частоту поднять вверх. Но делать это нужно осторожно и аккуратно, есть шанс спалить мотор.

И еще рекомендую ограничить минимальную частоту на 30 Гц, чтобы не допустить запуска вхолостую и перегрева. Двигатель начинает сильно греться, при пуске на низких частотах.

На этом у меня всё, друзья.

Мне очень нравится кататься на велосипеде. Ещё больше — модернизировать, добавлять что-то новое и интересное. Я совсем недавно в просторах интернета нашёл комплект электромотора для заднего колеса. Комплекты существуют, как и для переднего колеса, так и для заднего:

Загорелся идеей поставить и на свой велобайк. Может кто сталкивался? Кто-то ставил? Хочу увидеть ваше мнение. Пишите в комментариях.

Надеюсь моя статья помогла вам определиться с выбором подключения однофазного двигателя? Если что-то не дописал, напишите в комментариях, исправлю. )

P.S. Небольшой анонс следующей статьи:

Широкая доступность фотоустройств породила новую проблему — потребность в эффективных инструментах цифрового монтажа. На этом рынке традиционно доминирует профессиональный графический пакет Adobe Photoshop. Но, не стоит ограничивать свой кругозор только им. Существует огромное количество достойных фоторедакторов, покрывающих 90% повседневных нужд фотографов-любителей.

Спасибо за то, что читаете мои статьи! Всего вам доброго!!

С уважением, Гридин Семён

Интересен блог? Подпишись и получай новости на почту

Вам так же может быть интересно

Есть конкретный двигатель (аир 1е71в2у) и частотник (danfos на 2.2квт). Можете помочь с подключением? Было бы удобно через почту пообщаться, я скинул бы подробные параметры и фото.

Пишите письмо, так удобнее разобраться с вашей проблемой.

Колесо Дуюнова. Что скажешь?

Сталкивался только в «трубе».

Они бают о 120% КПД.

Опасный агрегат получается.

Я пока не знаю, я только в теории знаю об этом колесе.

Семён, доброго времени суток. Если вы заинтересовались мотор колесом Дуюнова, то я вам могу помочь с информацией о нём и о проекте народного инвестирования.

Проект «Двигатели Дуюнова» утвержден к вступлению в особую экономическую зону!

17 декабря 2018года, состоялось заседание межведомственной комиссии по вопросу получения компанией «СовЭлМаш» резидентства особой экономической зоны.

После долгих месяцев ожидания, проект «Двигатели Дуюнова» прошел, все необходимые согласования и был утвержден на вступление в особую экономическую зону “Технополис «Москва» на площадку «Алабушево».

Сейчас проходит этап оформления протоколов и сопутствующих бумаг.

На основании этого, есть необходимость актуализировать проект с учетом принятых решений, провести корректировку графика выполнения работ, с учетом которого будет производиться строительство и корректировка смет из-за изменений в законодательстве.

После предоставления всех актуализированных документов с «СовЭлМаш» будет заключен договор. С момента подписания этого договора, проект Дуюнова становится резидентом ОЭЗ!

Команда уже приступила к необходимым действиям по площадке будущего инженерно-конструкторского предприятия: запрошены коммерческие предложения у нескольких застройщиков. На основании предложения, которое станет оптимальным для проекта, будет разработан архитектурный план и выполнена проектная документация на строительство.

Уже даны распоряжения о приобретении временных переносных сооружений — бытовок для строительной площадки, скоро приступим к подготовке зоны для застройки будущего конструкторского бюро.

Это большой и очень долгожданный шаг проекта вперед, позволяющий снять всевозможные сомнения о его реализации.

Частотное регулирование однофазного асинхронного двигателя

Частотное управление электроприводами активно развивается и все чаще можно услышать о новом методе управления, или улучшенном частотнике, или о внедрении частотного электропривода в какой-то сфере, где ранее никто и подумать не мог что это возможно. Но это факт!

Если мы внимательно рассмотрим электродвигатели, к которым применяют частотное регулирование – то это асинхронные или синхронные трехфазные двигатели. Существует несколько разновидностей преобразователей частоты. Но ведь есть и однофазные асинхронные машины, почему прогресс не касается их? Почему частотное управление не применяют так активно к однофазным машинам? Давайте рассмотрим.
Содержание:

Читайте также:
Напольная плитка в форме ромба в интерьере

Принцип работы однофазной асинхронной машины

При однофазном питании асинхронника в нем вместо вращающегося магнитного поля возникает пульсирующее, которое можно разложить на два магнитных поля, которые будут вращаться в разные стороны с одинаковой частотой и амплитудой. При остановленном роторе электродвигателя данные поля создадут моменты одинаковой величины, но различного знака. В итоге результирующий пусковой момент будет равен нулю, что не позволит двигателю запустится. По своим свойствам однофазный электродвигатель похож на трехфазный, который работает при сильном искажении симметрии напряжений:

на рисунке а) показана схема асинхронной однофазной машины, а на б) векторная диаграмма

Основные виды однофазных электроприводов

Как упоминалось однофазный двигатель не может развивать пусковой момент, следствием чего становится невозможность его самостоятельного запуска. Для этого придумали несколько способов компенсации магнитного поля противоположного по знаку основному.

Двигатели с пусковой обмоткой

В данном способе пуска кроме основной обмотки Р, имеющей фазную зону 120 0 , на статор наматывают еще и пусковую П, которая имеет фазную зону 60 0 . Также пусковая обмотка сдвигается относительно рабочей на 90 0 электрических. Для того, чтоб создать фазовый сдвиг между токами обмоток Iр и Iп последовательно в пусковую обмотку подключают элемент, приводящий к сдвигу фаз ψ (фазосдвигающее сопротивление Zп):

Где: а) схема подключения машины, б) векторные диаграммы при использовании различных сопротивлений.

Наилучшими условиями для пуска будет включения конденсатора в пусковую обмотку. Но поскольку емкость конденсатора довольно велика, соответственно и его стоимость и габариты тоже возрастают. Зачастую его применяют для получения повышенного момента для пуска. Пуск с помощью индуктивности имеет наихудшие показатели и в настоящее время не используется. Довольно часто могут применять запуск с помощью активного сопротивления, при этом пусковую обмотку делают с повышенным активным сопротивлением. После запуска электродвигателя пусковая обмотка отключается. Ниже показаны схемы включений и их пусковые характеристики:

Где: а,б) двигатели с пусковой обмоткой, в,г) конденсаторные

Конденсаторный двигатель

Данный тип электродвигателя имеет две рабочие обмотки, в одну из которых подключают рабочую емкость Ср. Данные обмотки сдвинуты относительно друг друга на 90 0 электрических и имеют фазные зоны тоже 90 0 . При этом мощности обеих обмоток равны, но их токи и напряжения различны, также различны количества витков. Иногда величины конденсатора рабочего не достаточно для формирования нужного пускового момента, поэтому параллельно ему могут вешать пусковой, как это показано на рисунке выше. Схема приведена ниже:

Где: а) схема конденсаторного электродвигателя, б) его векторная диаграмма

В данном типе однофазных машин коэффициент мощности cosφ даже выше чем у трехфазных. Это объясняется наличием конденсатора. КПД такого электродвигателя выше, чем однофазного электродвигателя с пусковой обмоткой.

Частотное регулирование однофазных асинхронных электродвигателей

Итак, все чаще появляются предложения частотных преобразователей, которые могут управлять однофазными асинхронными машинами. В силу того что частотники предназначены для работы с трехфазными машинами, то для регулирования оборотов однофазной машинами необходим особый вид частотного преобразователя. Это обусловлено тем, что трехфазные и однофазные машины имеют немного разный принцип работы. Давайте рассмотрим схему включения, которую предоставляет один из официальных производителей частотных преобразователей для однофазных машин:

Это схема прямого подключения. Где: Ф-фаза питающего напряжения, N-нейтральный проводник, L1, L2 – обмотки двигателя, Ср – рабочий конденсатор.

А вот схема подключения преобразователя:

Как мы можем видеть, конденсатор при включении данной схемы отключается. Обмотка L1 переключается к выходу преобразователя фазы А, а L2 к В. Общий провод подключается к выходу С. Тем самым мы фактически получили двухфазную машину. Фазовый сдвиг теперь будет реализовывать частотный преобразователь, а не конденсатор. На выходе преобразователя будет обычное трехфазное напряжение.

Данный способ частотного регулирования трудно назвать однофазным, так как при питания двигателя от сети напрямую необходимо опять восстанавливать схему с конденсатором. Более того, этот способ регулирования частоты НЕ ПОДХОДИТ для машин с пусковой обмоткой, так как сопротивление рабочей и пусковой обмотки не равны, появится асимметрия.

Можем сделать вывод, что данный вид частотного регулирования подходит не всем электродвигателям, а только конденсаторным. Более того, при такой схеме подключения необходимо провести переподключение обмоток внутри электродвигателя (в коробке выводов электродвигателя), что после переподключения не позволит работать ему от сети напрямую. Поэтому если вы собираетесь питать электродвигатель от однофазной сети через частотник, то, может быть стоит купить преобразователь, который питается от однофазной сети, а двигатель обычный, трехфазный. Это лучше с точки зрения работы самой машины, также отсутствуют переделки внутри электрической машины. Если вы собираетесь таким образом модернизировать систему, то внимательно изучите характеристики электродвигателя, преобразователя, чтоб избежать пустой траты средств или выхода из строя элементов системы.

Читайте также:
Садовые и строительные тележки, двухколесные и четырехколесные

Преобразователь частоты для однофазного двигателя

Однофазные двигатели – тип электрических машин переменного тока. Принцип их действия тот же, что у трехфазных электродвигателей, отличие в том, что питание обмотки от 1 фазы создает пульсирующее магнитное поле. Для пуска однофазных электрических машин требуется дополнительный фазосдвигающий элемент.

Мощность и момент таких двигателей ниже трехфазных аналогов с такими же массо-габаритными характеристиками, сфера применения однфазных приводов:

  • Насосные установки небольшой производительности.
  • Стиральные машины и другая бытовая техника.
  • Электроинструменты и станки.
  • Маломощные вентиляторы и компрессоры.
  • Другое бытовое и профессиональное оборудование.

В сравнении с трехфазными, однофазные двигатели имеют меньший КПД, сильнее нагреваются и шумят при работе, их применяют при отсутствии 3-фазной сети или в условиях, где нецелесообразно использование трехфазных электрических машин.

Виды однофазных двигателей

Двигатели на 1 фазу различают по способу старта: с конденсаторным пуском и работой через обмотку (CSIR), со стартом через пусковой емкостной элемент и работой через конденсатор (CSCR). Существуют еще 2 вида однофазных электродвигателей: с реостатным пуском (RSIR) и с постоянным разделением емкости (PSC).

Схема двигателей с пусковым конденсатором и 2 обмотками выглядит таким образом:

Емкостной элемент последовательно подключен к пусковой обмотке и вызывает сдвиг фаз между ней и главной обмоткой. Это обеспечивает появление вращающегося магнитного поля и старт двигателя. После разгона конденсатор отключают.

Пусковой момент электродвигателей с конденсаторным пуском и работой через обмотку (CSIR) составляет до 250% от номинального, такие электрические машины допускают старт под нагрузкой и применяют в компрессорах холодильников, в приводе конвейеров.

Двигатели с пусковой и рабочей емкостью (CSCR ) также имеют значительный момент при старте. Благодаря постоянно включенному рабочему конденсатору, обеспечивается постоянный сдвиг фаз между обмотками. За счет этого существенно уменьшается нагрев при длительной работе. Область CSCR двигателей – бытовые насосы, оборудование, рассчитанное на длительный режим работы и высокую нагрузку.

Двигатели RSIR запускаются через пусковую обмотку с большим сопротивлением, обеспечивающую некоторый сдвиг фаз. После разгона коммутирующее устройство отключает ее. Электродвигатели с разделенными обмотками дешевле конденсаторных, однако высокий пусковой ток, небольшой стартовый момент, значительный нагрев ограничивает их применение. Двигатели используют в приводе оборудования, рассчитанного на непродолжительную работу и пуск без нагрузки.

Двигатели с постоянно работающим конденсатором (PSC) приспособлены к длительной работе. Такие электрические машины обладают самым высоким коэффициентом мощности КПД среди однофазных двигателей. Пусковые токи также не велики. К недостаткам двигателей PSC относится небольшой пусковой момент. Область их применения – приводы оборудования с низкоинерционной нагрузкой.

Управление скоростью однофазных двигателей

Существуют несколько способов управления однофазными двигателями. Наибольшее распространение получили методы изменения скорости величиной и частотой напряжения. Регулирование напряжением имеет свои недостатки:

  • Избыточный нагрев обмоток из-за повышения скольжения.
  • Потеря жесткости механических характеристик на низких скоростях.

Изменение частоты вращения вала возможно в отношении 2:1 к номинальной скорости в сторону снижения. Несмотря на это, регулирование напряжения часто применяют для маломощных электрических машин бытовых приводов.

Самая простая схема – автотрансформаторная. Такой способ позволяет реализовать 2-5 ступенчатое управление скоростью однофазного электропривода.

Автотрансформатор Т1 имеет несколько выводов, соответствующих значению напряжения для каждой скорости двигателя М1. Переключение осуществляется коммутационным аппаратом SW1. К преимуществам схемы относятся возможность выдерживать перегрузки по току и отсутствие искажения формы питающего напряжения. К недостаткам относятся значительные габариты и масса автотрансформатора, а также другие минусы управления напряжением.

Схемы на базе электронных регуляторов напряжения также широко применяют в однофазных приводах небольшой мощности.

Управление осуществляется формированием необходимой величины напряжения путем регулирования момента открытия и закрытия тиристоров. В результате получается напряжение «резанной» формы. Это вызывает дополнительный нагрев, треск, рывки и повышенный шум, увеличение уровня электромагнитных помех. Управление электронными регуляторами напряжения не подходит при длительной работе на низкой скорости, при высоких требованиях ЭМС.

Для частотного управления применяют преобразователи частоты или ПЧ. Для изменения скорости однофазного электродвигателя применяют 2 схемы: одно- или трехфазный ШИМ-инвертор. Первая работает следующим образом: переменное напряжение преобразуется в постоянное, фильтруется на конденсаторе.

Далее преобразуется обратно в переменное на транзисторном инвертере. Широта и скорость отпирающих и запирающих полупроводниковые элементы импульсов подобрана таким образом, чтобы на выходе силовой схемы получалось напряжение заданной частоты.

Читайте также:
Особенности и применение клея Ceresit CM 11

Частотная регулировка скорости может осуществляется вверх и вниз от номинальной. При этом форма напряжения на выходе инвертора близка и синусоидальной.

К недостаткам однофазного частотного управления относится относительно высокая стоимость преобразователя, невозможность реверсирования без внешней аппаратуры.

Для изменения скорости двигателя в широком диапазоне, применяют специализированные преобразователи частоты на базе 3-фазного ШИМ-инвертора.

Принцип работы устройства аналогичен однофазному аналогу. Схема позволяет осуществлять изменения скорости вращения двигателя в любую сторону в значительном диапазоне и реверсировать двигатель изменением порядка коммутаций транзисторов.

При этом не нужно применять дополнительные электроаппараты.

Рассмотрим подробнее особенности преобразователей частоты для однофазных двигателей, преимущества и недостатки устройств.

Особенности и преимущества частотного управления однофазными двигателями

Частотное управление однофазными электродвигателями лишено недостатков регулирования величиной напряжение. Преобразователи частоты позволяют:

  • Изменять скорость выше и ниже от номинальной.
  • Осуществлять плавную регулировку.
  • Избежать потери жесткости механических характеристик.
  • Существенно увеличить диапазон регулирования.

Еще одно достоинство частотных преобразователей для однофазных двигателей на базе схемы двойного преобразования с ШИМ-инвертором – сохранение синусоидальной формы питающего напряжения. Двигатель не испытывает негативного влияния постоянной составляющей, вызывающий нагрев и шум, уровень электромагнитных помех также существенно ниже, чем при использовании электронных регуляторов напряжения.

Современный преобразователь частоты может не только регулировать скорость вращения и момент. Оборудование:

  • Выполняет функции автоматического регулирования по ПИ или ПИД закону. Преобразователи частоты содержат контроллер или процессор, который позволяет обрабатывать сигналы обратной связи от датчиков и реализовать управление по заданным алгоритмам.
  • Заменяют схемы защиты электродвигателя. Преобразователи частоты отключают двигатель при перегрузках, коротких замыканиях, снижении или увеличении напряжения до недопустимых значений. Возможно также отключение привода по сигналу датчиков технологических параметров.
  • Позволяют снизить нагрев и шум при работе однофазного двигателя, улучшить характеристики и облегчить пуск. Частотное управление позволяет частично сгладить недостатки работы электрических машин при пульсирующем магнитом поле, уменьшить ток при пуске, обеспечить необходимый момент на валу и избежать перегрева при длительной работе.

Применение преобразователей частоты позволяет значительно снизить потребляемую мощность при недозагрузке двигателей. В вентиляционных системах экономия может составлять до 70%.

Как выбрать однофазный преобразователь частоты

Преобразователь частоты выбирают при проектировании привода. В случае с однофазным двигателем, прежде всего, необходимо убедиться, что он совместим с оборудованием. Большинство частотных преобразователей на 220 В выполнены по схеме 3-фазного ШИМ-инвертора, такие устройства могут осуществлять управление конденсаторным двигателем по скалярному алгоритму. В таких случаях для улучшения электромагнитной совместимости требуется установка моторного дросселя. При подключении таких преобразователей к двигателям с разделенными обмотками с разным сопротивлением будет срабатывать защита от асимметрии фаз. В таких случаях необходим частотник на базе 1-фазного инвертора. Для изменения направления вращения таких приводов перед преобразователем устанавливают реверсивный магнитный пускатель.

Перед выбором нужно ознакомиться с документами на двигатель, чтобы определить, подходит ли он для подключения к ПЧ без внесений изменений в конструкцию.

Далее подбирают номинальный ток или мощность. Производители рекомендует делать выбор с запасом 20% для преобразователей частоты. При пуске под нагрузкой или высоком пусковом токе требуется выбрать мощность ПЧ на 1 или 2 ступени больше.

Затем выбирают интервал регулирования скорости или момента. Диапазон частот выходного напряжения и величины тока должен отвечать назначению электропривода.

Для однофазных двигателей исполнительных механизмов, другого оборудования, работающего в составе систем автоматизации и контроля, требующего наличия специальных функций нужно предусмотреть наличие нужных опций преобразователей.

Стандартные возможности ПЧ:

  • Настройка времени разгона и торможения для электроприводов различного назначения.
  • Конфигурируемые унифицированные аналоговые/импульсные/релейные входы и выходы для связи с датчиками или другим оборудованием.
  • Функции PLC, ПИ-, ПИД-регулятора для автоматического управления по заданным законам или в соответствии с записанной программой.
  • Поддержка протоколов цифровой связи для отправки и приема данных о рабочих параметрах, неисправностях, другой информации, дистанционного изменения настроек с удаленной панели оператора, ПК или другого устройства верхнего уровня.
  • Функции защиты от перегрузок, пониженного или повышенного напряжения, других аномальных режимов и аварий.

Далее подбирают характеристики ПЧ в соответствии с условиями эксплуатации и ЭМС. Степень защиты корпуса от пыли и влаги должны отвечать окружающей среде. При этом также учитывают наличие встроенного вентилятора для принудительного охлаждения. Искажение тока и напряжение привода должны отвечать требованиям к электромагнитной совместимости. При необходимости нужно использовать входные и выходные фильтры гармоник и радиопомех.

Читайте также:
Перегородки из гипсокартона в ванной: видео-инструкция по монтажу своими руками, цена, фото

Применение преобразователей частоты для однофазных двигателей не менее эффективно чем для трехфазных. Частотники позволяют намного расширяют технические возможности электропривода, экономят электроэнергию, снижают вероятность аварий.

Особенности и схема подключения частотного преобразователя к разным типам электродвигателей

Частотные преобразователи используются для подключения различных электродвигателей и позволяют регулировать такие характеристики, как скорость вращения ротора, момент силы вала и защищают от перегрузок и перегрева. Также такие устройства дают возможность подключать трехфазное оборудование в однофазную систему без потери мощности и перегрева обмоток двигателя.

Разновидности частотных преобразователей

Современные частотные преобразователи различаются многообразием схем, которые можно сгруппировать в несколько категорий:

  1. Высоковольтные двухтрансформаторные

Принцип работы такого прибора заключается в последовательном преобразовании напряжения при помощи понижающего и повышающего трансформатора, преобразования частоты низковольтным преобразователем, а также сглаживание пиковых перенапряжений на выходе с помощью синусоидального фильтра. Схема работы выглядит следующим образом: питающее напряжение 6000 В подается на понижающий трансформатор и на его выходе получают 400 (660) В, далее оно подается на низковольтный преобразователь и после изменения частоты подается на повышающий трансформатор для увеличения значения напряжения до начального.

  1. Тиристорные преобразователи

Такие устройства состоят из многоуровневых частотных преобразователей на основе тиристоров. Конструктивно они состоят из трансформатора (обеспечивающего понижение питающего напряжения), диодов (для выпрямления) и конденсаторов (для сглаживания). Также для уменьшения уровня высших гармоник применяют многопульсные схемы.

Тиристорные преобразователи имеют высокий КПД до 98 % и большой диапазон выходных частот 0-300 Гц, что для современного оборудования является положительной и востребованной характеристикой.

  1. Транзисторные частотные преобразователи

Такие частотные преобразователи являются высокотехнологичными устройствами, которые собираются на транзисторах различного типа. Конструктивно они имеют транзисторные инверторные ячейки и многообмоточный сухой трансформатор специальной конструкции. Управляют таким преобразователем с помощью микропроцессора, что позволяет тонко настраивать работу оборудования и контролировать весь процесс работы различных двигателей. Транзисторные частотные преобразователи, так же, как и тиристорные, имеют высокий КПД и широкий диапазон регулирования частоты.

Как подключить частотный преобразователь

Для подключения частотного преобразователя к оборудованию, прежде всего необходимо убедиться в том, что характеристики такого прибора подходят для работы с конкретным электродвигателем. Также важно, чтобы напряжение питающей сети позволяло использовать данный частотный преобразователь.

При установке и подключении ЧП необходимо, чтобы условия эксплуатации соответствовали классу защищённости от влаги и пыли, а также были выдержаны все расстояния от движущихся частей машин и механизмов, от людских проходов и электрооборудования и аппаратуры.

Схема подключения ПЧ

Частотные преобразователи бывают как для трехфазных сетей, так и для однофазных. При этом к однофазной сети также можно подключать и трехфазный частотный преобразователь по схеме «треугольник», который дополнительно оснащен специальным конденсаторным блоком (при этом значительно падает мощность и понижается КПД устройства). Подключение же трехфазного преобразователя в соответствующей сети производится по схеме «звезда».

Управление частотным преобразователем может осуществляться с использованием контакторов, встроенных в различные релейные схемы, микропроцессорных контроллеров и компьютерного оборудования, а также вручную. Поэтому при подключении автоматизированных систем требуется участие специалистов по наладке такого оборудования.

Обратите внимание! Частотный преобразователь может иметь дополнительные настройки, выполняемые с помощью DIP-переключателей, а также встроенным программным обеспечением.

Принцип подключения частотных преобразователей в целом одинаковый, но может несколько отличаться для разных моделей. Поэтому правильным решением будет перед подключением изучить инструкцию, сопоставить характеристики устройств и убедиться в том, что устройство подключается по схеме, предложенной производителем.

Для трехфазного электродвигателя

Для трехфазного электродвигателя принцип подключения следующий: к клеммным колодкам на выходе трехфазного частотного преобразователя подключаются фазные проводники к каждому выводу, а на вход подключаются фазы питающего напряжения. В данном случае всегда реализуется схема подключения «звезда» в двигателе. При подключении трехфазного двигателя через частотный преобразователь к однофазной сети применяют схему «треугольник».

Для однофазного электродвигателя

Для однофазного электродвигателя необходимо подключить фазный и нулевой проводник к преобразователю частоты, а обмотки двигателя подключаются к соответствующим клеммам на выходе частотного преобразователя. Например, обмотка L1 будет подключаться к клемме А преобразователя, обмотка L2 к клемме B, а общий провод к клемме C. Если применяется конденсаторный двигатель, то от частотного преобразователя фаза подключается к двигателю, а конденсатор обеспечивает сдвиг фаз.

Во всех случаях, при подключении частотных преобразователей и электродвигателей, всегда следует применять устройства защиты: автоматические выключатели и УЗО, рассчитанные на высокие пусковые токи, а также обязательно подключать заземляющий проводник к корпусам устройств. Также важно обратить внимание на сечение проводников электрокабеля, которым будет производится подключение – сечение должно соответствовать параметрам подключаемого частотного преобразователя и нагрузки.

Читайте также:
Подпорные стенки: виды и строительство

Работа частотника с однофазным двигателем

В силу ряда причин однофазные двигатели получили широкое распространение в быту. Их, как и трехфазные приводы, можно подключать через преобразователи частоты, при этом сохраняются все преимущества такой схемы подключения — плавный разгон и замедление, установка любой скорости вращения, контроль за током и моментом на валу, защита. Однако подключение однофазных двигателей имеет свои особенности, о которых мы и расскажем ниже.

Электродвигатель

В статье пойдет речь об однофазных асинхронных электродвигателях, имеющих два вывода питания и питающее напряжение 220 или 380 В при номинальной частоте 50 Гц. Как правило, такие агрегаты имеют в своей схеме пусковой либо фазосдвигающий конденсатор.

Частотный преобразователь

По способу подключения питания на входные клеммы различают однофазные и трехфазные частотники. При этом однофазные частотные преобразователи питаются фазным напряжением 220 В, трехфазные – линейным 380 В. Однако на выходе ПЧ обычно вырабатывается трехфазное напряжение со сдвигом фаз 120°, величина которого ограничена напряжением питания на входе.


Однофазный и трехфазный преобразователи SIEMENS Micromaster 420

В контексте однофазных двигателей преобразователи частоты можно условно разделить на три группы:

  1. Преобразователи, специально предназначенные для однофазных двигателей.
  2. Преобразователи с опциональной возможностью подключения однофазных двигателей, при этом необходимо использовать соответствующие настройки и схему подключения.
  3. Преобразователи без возможности подключения однофазного двигателя.

Мы рассмотрим частотники из второй группы.

Обратите внимание! Не стоит путать преобразователи с однофазным питанием по входу с частотниками, имеющими однофазный выход. Возможны комбинации, когда преобразователь с однофазным питанием имеет на выходе 3 фазы с напряжением 220 В, либо когда ПЧ с трехфазным питанием выдает на однофазный двигатель напряжение 220 или 380 В.

Особенности подключения

Как было сказано выше, не каждый частотный преобразователь может работать с однофазным двигателем, поскольку при его подключении третья (неподключенная) фаза фактически будет в обрыве, что вызовет ошибку. Поэтому необходимо внимательно ознакомиться с документацией к ПЧ — производитель должен явно указать, что имеется возможность подключения и работы однофазной нагрузки.

Поскольку однофазный двигатель содержит конденсатор, при изменении рабочей частоты не удастся обеспечить нужный сдвиг фаз, и двигатель на пониженных частотах (менее 30 Гц) будет перегреваться. Это следует учитывать при выборе диапазона рабочих частот и способа охлаждения привода.

При однофазном подключении двигателя оперативный реверс через панель управления или настройки ПЧ невозможен. Поменять направление вращения можно, изменив схему подключения обмоток внутри двигателя.

Настройка преобразователя частоты

При настройке частотника нужно обратить внимание на следующие моменты:

  • По возможности ограничить время разгона и торможения с целью уменьшения нагрева ПЧ и двигателя. Тоже самое касается и количества циклов включения/выключения в единицу времени.
  • Выбрать скалярный режим частотного управления.
  • Отключить контроль обрыва фаз на выходе ПЧ.
  • Перед первым пуском обязательно провести автоматическую настройку (адаптацию) согласно инструкции.

Здесь нужно обратить внимание на один важный момент. Однофазный двигатель имеет КПД ниже, чем трехфазный с теми же параметрами. Это следует учитывать при выборе пары ПЧ/двигатель. Для повышения КПД и уменьшения нагрева можно экспериментально выставить точки на вольт-частотном графике. Как вариант, можно отключить пусковой конденсатор, а выводы от пусковой и рабочей обмоток подключить к выходу трехфазного преобразователя. Далее провести настройку, как указано выше.

Переделка однофазного двигателя в трехфазный

Нередко однофазный асинхронный двигатель на деле оказывается трехфазным. Его переделка на одну фазу обычно связана с ограничениями по питанию, которое в некоторых локациях может быть только однофазным.

Перед тем, как подключать однофазный двигатель к ПЧ, можно проверить возможность его работы на трех фазах. Для этого нужно вскрыть борно, определить тип двигателя и его исходную схему. Чаще всего выясняется, что привод имеет трехфазное питание с линейным напряжением 220 В и собран по схеме «Треугольник», при этом для обеспечения его работы от одной фазы применяют фазосдвигающий конденсатор. Следовательно, достаточно исключить из схемы конденсатор и запускать двигатель по обычной трехфазной схеме.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: