Принцип работы холодильника: как работает устройство, схема конденсатора, как утроен испаритель принципиально

Схема и принцип работы разных холодильников

Домашний уют современного человека невозможно представить без холодильника. Он предназначен для длительного хранения продуктов. По подсчетам ученых, каждый член семьи открывает дверцу до 40 раз в сутки. Мы заглядываем вовнутрь даже не задумываясь, как работает наш холодильник.

В нашей статье мы подробно рассмотрим устройство и принцип действия различных холодильников.

Как устроен холодильник

Любой современный холодильник состоит из следующих основных агрегатов:

  1. Двигатель.
  2. Конденсатор.
  3. Испаритель.
  4. Капиллярная трубка.
  5. Осушительный фильтр.
  6. Докипатель.

Схема работы холодильника

Электродвигатель

Двигатель является основным узлом бытового прибора. Предназначен для циркуляции охлаждающей жидкости (фреона) по трубкам.

Двигатель состоит из двух агрегатов:

  • электромотор;
  • компрессор.

Электромотор преобразует электрический ток в механическую энергию. Агрегат состоит из двух частей – ротора и статора.

Корпус статора устроен из нескольких медных катушек. Ротор имеет вид стального вала. Ротор соединен с поршневой системой двигателя.

При подключении двигателя к сети питания в катушках возникает электромагнитная индукция. Она является причиной возникновения крутящего момента. Центробежная сила приводит ротор во вращательное движение.

А знаете ли Вы, что на долю холодильника приходится 10 % всей потребленной электроэнергии. Открытая дверца прибора увеличивает потребление электричества в несколько раз.

При вращении ротора двигателя происходит линейное перемещение поршня. Передняя стенка поршня сжимает и разряжает рабочую жидкость до рабочего состояния.

Положение двигателя холодильника

В современных охлаждающих установках электродвигатель находится внутри компрессора. Такое расположение преграждает газу путь для самопроизвольной утечки.

Для уменьшения вибраций двигатель находится на пружинистой металлической подвеске. Пружина может находится снаружи или внутри устройства. В современных агрегатах пружина находится внутри корпуса двигателя. Это позволяет эффективно гасить вибрации при работе аппарата.

Конденсатор

Представляет собой змеевидный трубопровод диаметром до 5 миллиметров. Предназначен для отвода тепла от рабочей жидкости в окружающую среду. Конденсатор располагается на задней наружной поверхности прибора.

Испаритель

Представляет систему тонких трубок. Предназначен для испарения рабочей жидкости и охлаждения окружающего пространства. Располагается внутри или снаружи морозильника.

Капиллярная трубка

Предназначена для снижения давления газа. Имеет диаметр от 1,5 до 3 миллиметров. Расположена на участке между испарителем и конденсатором.

Фильтр-осушитель

Предназначен для очистки рабочего газа от влаги. Имеет вид медной трубки диаметром от 10 до 20 мм. Концы трубки вытянуты и герметично впаяны с капиллярную трубку и конденсатор.

Внимание! Фильтр-осушитель имеет односторонний принцип работы. Устройство не предназначено для работы на обратном режиме. При неправильной установке фильтра возможен выход установки из строя.

Внутри трубки находится цеолит — минеральный наполнитель с высокопористой структурой. На обоих концах трубки установлены заграждающие сетки.

Докипатель

Представляет собой металлическую емкость. Устанавливается на участке между испарителем и входом компрессора. Предназначен для доведения фреона до кипения с последующим испарением.

Служит защитой двигателя от попадания жидкости. Попадание рабочей жидкости может привести к выходу его из строя.

Как работает холодильник

Главный принцип работы любого холодильника основан на выполнении двух рабочих операций:

  1. Вывод тепловой энергии из устройства в окружающее пространство.
  2. Концентрация холода внутри корпуса прибора.

Для отбора тепла применяется хладагент под названием фреон. Это газообразное вещество на основе этана, фтора и хлора. Фреон обладает уникальной возможностью переходить из газообразного состояния в жидкое и обратно. Переход из одного состояние в другое происходит при изменении давления.

Работа системы охлаждения заключается в следующем. Компрессор засасывает фреон вовнутрь. Внутри устройства работает электромотор. Двигатель приводит в движение поршень. При движении поршня происходит сжатие газа.

Принципиальная схема работы холодильника

Процесс сжатия газа делится на два этапа. На первом этапе происходит возвратное движение поршня. При смещении поршня открывается впускной клапан. Через открытое отверстие фреон поступает в газовую камеру.

На втором этапе поршень смещается в обратном направлении. При обратном движении поршень сжимает газ. Сжатый фреон давит на пластину выходного клапана. В камере резко повышается давление. При увеличении давления происходит нагрев газа до температуры 100° C. Выпускной клапан открывается и выпускает газ наружу.

Нагретый фреон из камеры поступает во внешний теплообменник (конденсатор). По пути следования по конденсатору фреон отдает тепло наружу. В конечной точке конденсатора температура газа уменьшается до 55° C.

А знаете ли Вы, что самые первые холодильники в качестве хладагента использовали диоксид серы? Такие приборы были очень опасны по причине высокой вероятности разгерметизации системы.

В процессе теплопередачи происходит конденсация газа. Фреон из газообразного состояния превращается в жидкость.

Из конденсатора жидкий фреон поступает в фильтр-осушитель. Здесь происходит поглощение влаги специальным сорбентом. Из фильтра газообразный фреон поступает в капиллярную трубку.

Капиллярная трубка играет роль своеобразной пробки (препятствия). На входе в трубку давление газа понижается. Хладагент превращается в жидкость. Из капиллярной трубки фреон поступает на испаритель. При падении давления происходит испарение фреона. Вместе с давлением падает и температура газа. В момент поступления в испаритель температура фреона составляет – 23° С.

Фреон проходит по теплообменнику внутри холодильной камеры. Охлажденный газ снимает тепло с внутренней поверхности трубок испарителя. При отдаче тепла происходит охлаждение внутреннего пространства холодильной камеры.

После испарителя фреон засасывается в компрессор. Замкнутый цикл повторяется.

Основные типы охлаждающих систем

По принципу действия различают следующие типы холодильников:

  • компрессионные;
  • адсорбционные;
  • термоэлектрические;
  • пароэжекторные.

В компрессионных агрегатах движение хладагента осуществляется за счет изменения давления в системе. Регулирование давления рабочей жидкости осуществляет компрессор. Охладительные системы с компрессором являются самым распространенным типом охлаждающих устройств.

В абсорбционных установках движение хладагента происходит за счет его нагревания от нагревательной системы. В качестве рабочей смеси используется аммиак. Недостатком системы является высокая опасность и сложность обслуживания. Данный тип бытовых приборов является устаревшим и на сегодняшний день снят с производства.

А знаете ли Вы, что самый первый холодильник был выпущен американской компанией General Electric в далеком 1911 году. Устройство было выполнено из дерева. В качестве хладагента использовался диоксид серы.

Главный принцип действия термоэлектрических холодильников основан на поглощении тепла при взаимодействии двух проводников во время прохождения по ним электрического тока. Данный принцип известен как Эффект Пельтье. Достоинством аппарата является высокая надежность и долговечность. Недостатком является высокая стоимость полупроводниковых систем.

В пароэжекторных установках используется вода. Роль двигательной установки выполняет эжектор. Рабочая жидкость попадает в испаритель. Здесь происходит вскипание жидкости с образованием водяного пара. При теплообразовании температура воды резко снижается.

Охлажденная вода используется для охлаждения продуктов. Водяной пар отводится эжектором на конденсатор. В конденсаторе водяной пар охлаждается, превращается в конденсат и вновь поступает на испаритель. Достоинством таких установок является их простота устройства, безопасность, экологичность. Недостатком пароэжекторной системы является значительный расход воды и электроэнергии на ее нагрев.

Принцип работы абсорбционных холодильников

Работа абсорбционных устройств основана на циркуляции и испарении жидкого хладагента. В качестве хладагента применяется аммиак. Роль абсорбента (поглотителя) выполняет аммиачный раствор на водной основе.

Схема работы абсорбционного устройства

В охлаждающую систему аппарата добавляются водород и хромат натрия. Водород предназначен для регулирования давления системы. Хромат натрия защищает внутренние стенки трубок от коррозии.

А знаете ли Вы, что старые советские холодильники в качестве охлаждающей смеси используют фреон R12 на основе хлора. Главным недостатком является его разрушительное действие на озоновый слой Земли.

При подключении к сети питания в генераторе-кипятильнике происходит нагрев рабочей жидкости. Рабочей смесью выступает водный раствор аммиака. Раствор аммиака находится в специальном резервуаре.

Нагрев хладагента приводит к испарению аммиака. Пары аммиака поступают в конденсатор. Здесь аммиак конденсируется и превращается в жидкость.

Сжиженный аммиак поступает в испаритель. Отсюда жидкий аммиак смешивается с водородом. Разность давлений двух веществ приводит к испарению аммиака. Процесс испарения сопровождается выделением тепла и охлаждением аммиака до -4° С. Вместе с аммиаком происходит охлаждение испарителя.

Читайте также:
Отопительные приборы для дачи

Охлажденный испаритель забирает тепло окружающего пространства. После испарения аммиак поступает в адсорбер. В адсорбере находится чистая вода. Здесь аммиак смешивается с водой. Аммиачный раствор поступает в резервуар. Раствор аммиака из резервуара поступает в генератор-кипятильник и замкнутый цикл повторяется.

В качестве заменителя аммиака могут использоваться водные растворы ацетона, бромистого лития, ацетилена.

Достоинством абсорбционных приборов является бесшумность работы агрегатов.

Принцип работы саморазмораживающегося холодильника

Процесс разморозки в установках с саморазмораживающейся системой происходит автоматически.

Существуют два типа саморазмораживающихся систем:

  1. Капельная.
  2. Ветреная (No frost).

В аппаратах с капельной системой испаритель находится на задней стенке аппарата. Во время работы аппарата на задней стенке образуется иней. При оттаивании иней стекает по специальным желобам в нижнюю часть прибора. Нагретый до высокой температуры компрессор испаряет жидкость.

В установках с ветряной системой холодный воздух от испарителя на задней стенке задувается специальным вентилятором внутрь корпуса. Во время цикла оттаивания иней стекает по желобкам в специальное отверстие.

Промышленные холодильники

Промышленные аппараты отличаются от бытовых устройств мощностью установки и размерами охлаждающих камер. Мощность двигателя оборудования достигает нескольких десятков киловатт. Рабочая температура морозильных камер находится в диапазоне от + 5 до – 50° C.

А знаете ли Вы, что самый большой промышленный холодильник занимает 24 км2 площади. Находится этого гигант в Женеве (Швейцария) и служит для научных целей при работе адронного коллайдера.

Промышленные установки предназначены для охлаждения и глубокой заморозки большого количества продуктов. Объем морозильных камер составляет от 5 до 5000 тонн. Используются на заготовительных и перерабатывающих предприятиях.

Принцип работы инверторного холодильника

Инверторные компрессоры предназначены для аккумуляции и преобразования постоянного тока в переменный ток с напряжением 220 В. Принцип работы основан на возможности плавного регулирования оборотов вала двигателя.

Устройство инверторного двигателя

При включении инвертор быстро набирает необходимое число оборотов для создания необходимой температуры внутри корпуса. На момент достижения заданных параметров устройство переходит в режим ожидания. Как только температура внутри корпуса повышается, срабатывает датчик температуры и скорость оборотов двигателя увеличивается.

Устройство термостата холодильника

Терморегулятор предназначен для поддержания заданной температуры внутри системы. Устройство герметично впаяно с одного конца капиллярной трубки. Другим концом капиллярная трубка подсоединяется к испарителю.

Основным элементом устройства терморегулятора любого холодильника является термореле. Конструкция термореле состоит сильфона и силового рычага.

Сильфоном называют гофрированную пружину, в кольцах которой находится фреон. В зависимости от температуры фреона, пружина сжимается или растягивается. При понижении температуры хладагента пружина сжимается.

А знаете ли Вы, что современные бытовые холодильники используют фреон R600a на основе изобутана. Этот хладагент не разрушает озоновый слой планеты и не вызывает парниковый эффект.

Под воздействием сжатия рычаг замыкает контакты и подключает компрессор к работе. При повышении температуры происходит растягивание пружины. Силовой рычаг размыкает цепь и мотор выключается.

Холодильник без электричества – правда или вымысел?

Житель Нигерии Мохаммед Ба Абба в 2003 году получил патент на холодильник без электричества. Устройство представляет собой глиняные горшки разной величины. Сосуды сложены друг в друга по принципу русской «матрешки».

Холодильник без электричества

Пространство между горшками заполняют влажным песком. В качестве крышки используется влажная ткань. Под действием жаркого воздуха влага из песка испаряется. Испарение воды приводит к снижению температуры внутри сосудов. Это позволяет длительное время хранить продукты на жарком климате без использования электроэнергии.

Знание устройства и принципа работы холодильника позволит выполнить несложный ремонт устройства своими руками. Если система настроена правильно, значит прибор будет работать долгие годы. При более сложных неисправностях следует обратиться к специалистам сервисных центров.

Геотермальное отопление: принцип работы, практическое использование, перспективы

Суть геотермальной энергии заключается в использовании естественного тепла земли на глубине 1,5 м. Этот один из альтернативных способов обогрева активно используется на промышленных предприятиях, сельских фермах, в жилых домах. Наибольший эффект достигается в регионах, где температура опускается ниже -20 градусов.

Большая часть нашей страны, за Уралом в Сибири на Дальнем востоке, не может похвастаться умеренно холодными зимами как в европейской части России. За частую столбик термометра опускается ниже отметки -40 -45 градусов. Широко известные и доступные воздушные тепловые насосы в этих условиях теряют свою актуальность, так как самые продвинутые модели способны эффективно работать с низкопотенциальным источником тепла температурой до -20.

В это же время, грунт и вода укрытые снегом, сохраняют большое количество теплоты. Температура земли ниже точки промерзания всегда сохраняет положительные значения +8 +12. Логично в этой ситуации отказаться от легкодоступного низкопотенциального источника воздуха в пользу более стабильной и теплоёмкой земли и воды.

Так же следует заметить, что КПД теплового насоса, а точнее его COP на прямую зависит от температуры источника. Чем теплее, тем эффективней процесс преобразования энергии.

Актуальность геотермального отопления

Традиционные виды топлива дорожают каждый год, при использовании углеводородов в атмосферу выбрасывается огромное количество загрязняющих веществ. Все это объясняет привлекательность альтернативных источников энергии. Например, в Швеции из 10 новых загородных домов 7 используют описываемый метод обогрева. При этом вопреки бытующему мнению, для эффективного функционирования системы не нужны близко расположенные гейзеры или вулканы: на равнине отопление работает ничуть не хуже. Геотермальное отопление дома подразумевает использование тепла от почвы, грунтовых вод, которые относительно легкодоступны. Чтобы получить 4-5 кВт/ч энергии, тепловому насосу хватит 1 киловатт-часа. Особенности системы:

  • экологическая и пожарная безопасность;
  • отсутствие шума при работе;
  • небольшие габариты системы;
  • автономный режим;
  • под оборудование, размещаемое в доме, требуется место, сопоставимое с габаритами обычной стиральной машины;
  • при правильном монтаже и настройке вмешательство человека не требуется;
  • длительный эксплуатационный ресурс: тепловые насосы служат от 20 до 30 лет;
  • высокая стабильность системы, работающей при любых погодных условиях;
  • большой промежуток между профилактическими ремонтами насоса (до 100 тыс. ч).

Принцип действия

Впервые был опубликован еще в 1824 г. во Франции ученым Сади Карно. Действие геотермального отопления можно сравнить со старым типом холодильника. В нем тепло отводится посредством обменника за пределы холодильной камеры: в итоге содержимое бытового прибора остывает. Геотермальный способ наоборот, вытесняется холод в грунт, а тепло накапливается в помещении.

Согласно закону термодинамики, теплота от нагретого тела стремится перейти к холодному и перейти в состояние равновесия. Благодаря расширению-испарению хладагента его объём увеличивается, а температура снижается, тепловая энергия земли старается уравновесить эти процессы. Контактируя с грунтом, через промежуточный теплоноситель, фреон поглощает его тепло. Однако этого мало, чтобы обогреть здание.

В системе – три главных составляющих:

  • тепловой насос;
  • коллектор, размещенный под землей;
  • система отопления дома.

Как работает тепловой насос

Внешне он напоминает небольшой холодильник, среди основных элементов которого стоит выделить:

  • ЭРВ: устройство дросселирующее фреон. Жидкий охлажденный хладагент под высоким давлением впрыскивается в испаритель с низким давлением.
  • Испаритель. Здесь хладагент испаряется и холодный газ поглощает окружающее тепло.
  • Компрессор, в котором нагнетается давление, благодаря чему газ разогревается до +70 градусов.
  • Конденсатор: сюда подается горячий газообразный фреон из компрессора, чтобы, конденсируясь и отдавая тепло снова, превратиться в жидкость. Через стенки конденсатора осуществляется теплообмен фреона и теплоносителя, циркулирующего в системе отопления здания.

Уникальность теплового насоса (ТН) в том, что он в жаркое время года может работать, как система охлаждения. Наиболее эффективно использовать это устройство с низкотемпературной системой отопления, теплыми полами либо фанкойлами. При выборе насоса стоит учитывать нижеследующие параметры:

  • СОР. Аббревиатура принята во многих странах мира и указывает на рентабельность ТН. Например, СОР 4 означает, что на 1 кВт потребляемого электричества вырабатывается 4 кВт тепловой энергии. Следует заметить, что СОР теплового насоса будет максимальным в случае, когда разница между низкопотенциальным источником и теплоносителем в системе отопления не будет превышать 40 градусов.
  • Контроллер. Наличие в составе ТН встроенного контроллера и автоматики управления устройством, говорит о том, что все собрано и протестировано на заводе изготовителе.
  • Компрессор. Современные холодильные системы все больше переходят на инверторные модели с частотным регулированием мощности.
  • Русификация. На первом этапе пользовательского освоения ТН, меню на русском языке сильно облегчает задачи по управлению и программированию устройства.
Читайте также:
Почему горят индикаторы на счетчике при выключенных приборах

Способы размещения труб (коллектора)

  1. Первый из них, горизонтальный, подразумевает размещение коллектора под точкой промерзания грунта. В зависимости от региона глубина расположения коллектора может составлять от полутора метров. Длинна подземного трубопровода не может быть короче труб теплого пола, уложенных в доме, так же она зависит от обводненности грунта, чем влажнее земля, тем выше теплоотдача.Не допускается строительство над контуром сооружений с заглубленным фундаментом, а после завершения монтажа потребуется благоустройство участка.
  2. Второй способ расположения коллектора – вертикальный. Придется бурить в грунте несколько скважин на расстоянии не ближе 2-3 м от дома, каждая из которых входит в почву под своим углом и направлены они в разные стороны. Внутри земляных отверстий глубиной до 50 м размещают геотермальные зонды. По конструкции это одна или пара U-образных труб, выполненных из пластика марки ПНД. Одна скважина (1 погонный метр) способна отдать до 50 Вт. Т. е., чтобы получить те же 7-9 кВт, нужно от 150 до 200 м геотермальных зондов. Это актуально, если участок небольшой, места мало. Данный способ в разы дороже горизонтального, но его плюс, не нарушается ландшафт участка. Единственное дополнительное условие – подготовка небольшого места под кессонный колодец, объединяющей трубы коллектора.
  3. Третий способ требует наличия рядом с домом водоема, который не промерзает зимой до дна (глубина должна быть от 2 м),там где будет располагаться затопленный геотермальный контур. Преимущества метода заключается в отсутствии необходимости проведения трудоемких земляных работ (исключая рытье транше до дома). Но есть и минусы – потребуется специальное разрешение, особенно, если водоем общественный. К тому же далеко не у каждого загородного дома рядом имеется озеро или пруд, река. И все же этот способ считается наиболее экономичным. Для отопления 100 кв. м площади понадобится от 250 до 300 погонных метров коллектора.
  4. И последний способ обустройства геотермальной установки – переливной. Когда вода отбирается из пробуренной водоносной скважины охлаждается в ТН на 4-5 градусов и снова сбрасывается, либо в приемную скважину, находящуюся на удалении 20 метров, либо в ближайший водоём. Недостатки данного способа заключаются в невозможности контроля уровня водоносного горизонта и необходимости дооборудования ТН фильтрами и промежуточными теплообменниками.

Общие отрицательные стороны геотермальных установок

Наиболее серьезная проблема – высокая стоимость подключения к низкопотенциальному источнику. Для отопления здания площадью в 300 кв. м инсталляция под ключ обойдется примерно в миллион рублей. При этом половина средств пойдет на покупку теплового насоса. Срок окупаемости самой эффективной системы, в сравнении с отоплением электричеством – от пяти лет. Еще один минус – сложность самостоятельного обустройства, о чем речь пойдет ниже.

Можно ли оборудовать геотермальную установку своими руками

Установить контуры самостоятельно очень сложно: нужны максимально точные расчеты, выполнить которые могут только специалисты. Малейшие ошибки в проектировании могут привести к низкой эффективности оборудования, и, как следствие, ее доработке, что повлечет к лишним расходам. Параметры, учитываемы при расчете геотермальной системы:

  • климат региона (среднегодовая температура, влажность);
  • извлекаемая тепловая мощность;
  • система отопления дома должна быть низкотемпературной.
  • суммарные теплопотери ограждающих конструкций дома, не должны превышать 70 Вт на 1 квадратный метр площади дома.

Перспективы развития геотермальных конструкций

Всего 25 лет назад в Европе для обогрева жилищ использовали тепло земли 25 млн. домовладельцев, сегодня эта цифра выросла в несколько раз. Это доказывает рентабельность геотермальных систем, окупаемых за несколько лет. К тому же правительства многих стран дотируют домовладельцев, пожелавших использовать энергию земли. В России такие конструкции распространены мало, что связано с большими изначальными затратами. Однако перспективы есть: с развитием конкуренции стоимость тепловых насосов будет уменьшаться, что приведет к удешевлению геотермального отопления. Но лучший вариант – государственная или хотя бы региональная поддержка. Особенно, если учитывать экологическую значимость подобного способа обогрева жилищ.

Геотермальное отопление по стоимости расходов на 2020 год и удобству эксплуатации, приравнивается к отоплению магистральным газом, при этом полностью взрывобезопасно и устанавливается за пару недель. Все остальные способы отопления либо существенно дороже, либо требуют больших ежедневных трудозатрат. Тенденции удорожания энергоносителей в обозримом будущем приведут к выравниванию российских цен с ценами для европейских потребителей. Разговоры об окупаемости в основном ведутся конкурентами по цеху, они не учитывают удобство такого способа отопления и инфляцию.

Сегодня условный потребитель зарабатывает достаточно денег, чтобы не замечать высокую стоимость обогрева своего жилища, но со временем, все может измениться.
Так как мысли о загородном доме возникают у населения нашей страны старше 40 лет, то инвестиции в отопление ТН можно рассматривать как вложения в личный пенсионный фонд. Потратиться на инсталляцию один раз и в последующем получать на 1 кВт электроэнергии 4-5 кВт тепла.

То что сейчас кажется необоснованно дорогим, завтра будет оцениваться совсем по другому.

Остались вопросы

Спасибо за обращение, мы обязательно перезвоним.

Как работает геотермальный тепловой насос

Повсеместное внедрение энергосберегающих технологий, позволило многим потребителям отказаться от использования традиционных видов топлива в пользу альтернативных источников энергии. Сравнительно недавно, отечественные покупатели смогли убедиться в эффективности и экономичности тепловых насосов. А после появления СОР, преимущества систем, получающих тепло от воды, земли, воздуха, стали особенно очевидны.

Среди нетрадиционного отопительного оборудования, особого внимания заслуживает геотермальный тепловой насос. Имея простую конструкцию, теплонасос способен эффективно отапливать дом, практически любой площади.

ТН нагревает теплоноситель до температуры +65°С, чего более чем достаточно для отопления дома с помощью теплых полов и радиаторов. Дополнительным преимуществом является возможность получить горячую воду для бытовых нужд.

Что такое геотермальный насос

Геотермальные тепловые насосы отопления – это автономные станции, использующие низко потенциальную тепловую энергию земли и грунтовых вод, для обогрева дома. Теплонасосы, использующие энергию грунта, уже давно используются в странах ЕС, Америки и Азии.

Многолетняя практика применения геотермальных тепловых насосов для отопления домов, не только показала целесообразность дальнейшего применения станций, но и позволила увидеть и устранить определенные недостатки.

Теплоснабжение с применением геотермальных насосов основано на использовании низко потенциальной энергии. По сути, теплонасос, это тот же кондиционер, только работающий на нагрев. Есть и отличия. Конструкция ТН более приспособлена на обогрев, чем на охлаждение помещений.

В отличие от воздушных теплонасосов, необходимыми условиями для эффективной работы не является положительная температура окружающей среды. Коллектор, по которому происходит забор тепловой энергии, расположен ниже уровня промерзания грунта. Поэтому, допускается применение теплового насоса в северных широтах.

Наибольшей популярностью пользуются комбинированные системы солнечного отопления и геотермального насоса. Работая в связке, оборудование получает достаточно энергии, для комфортного обогрева дома и обеспечения нужд ГВС.

Как работает геотермальный насос

В принципе работы используют так называемые геотермальные процессы. Ниже уровня промерзания грунта, земля имеет постоянную плюсовую температуру. По мере углубления в грунтовую породу, температура постепенно увеличивается.

Принцип работы системы геотермального теплоснабжения с тепловыми насосами заключается в использовании и преобразовании полученной энергии для нагрева теплоносителя дома. Происходит это следующим образом:

    Устанавливается геотермальный контур отбора, заполненный рассолом (пропиленгликолем).

Контур соединен с вертикальными геотермальными зондами, помещенными в скважины глубиной 60-100 м, либо горизонтальным коллектором, уложенным на глубине свыше 1 метра.

  • Рабочая жидкость в контуре циркулирует по замкнутому кругу между зондов и нагревается до 5-6°С, после чего подается в приемник теплового насоса.
  • Дальше ТН работает также, как и остальные модели, аккумулирующие тепло из окружающей среды. Насос имеет следующее устройство:

    Читайте также:
    Офисные перегородки для организации функционального и современного рабочего пространства

      Замкнутый контур – по трубкам циркулирует фреон, переходящий из жидкого в газообразное состояние.

    Испаритель – модуль, соединенный с приемником ТН. В емкости происходит испарение фреона, при этом поглощается тепло от разогретого пропиленгликоля.

    Фреон, в газообразном состоянии, подается в компрессор насоса. Там создается давление, разогревающее газ до +65°С, и дальнейшее впрыскивание его в конденсатор.

  • Конденсатор – разогретый фреон опять преобразовывается в жидкость, но уже нагретую до высокой температуры. Через стенки конденсатора происходит теплообмен, посредством чего нагревается теплоноситель водяного отопления дома.
  • Геотермальный насос обеспечит комфортную температуру обогрева помещений +23 +25°С. Этого показателя более чем достаточно для отопления в зимнее время года.

    Геотермальный насос устроен как источник тепла для низкотемпературных систем отопления. Хотя теплонасос можно подключать к радиаторным схемам, производители рекомендуют использовать для нагрева теплоносителя в теплых полах.

    Принцип работы геотермального теплового насоса обеспечивает абсолютную безопасность использования оборудования. В летнее время года станция работает на охлаждение.

    Насос типа земля-вода

    Системы геотермального отопления и охлаждения полностью зависят от эффективности забора тепла из грунта «рассолом». Существует два варианта прокладки контура, обеспечивающих различные характеристики теплоэффективности:

      Горизонтальный теплообменник – глубина заложения контура ниже промерзания земли, что не требует использования сложной буровой техники, тщательного планирования и изготовления проектной документации. Трубы закапывают на глубину от 1 м. Минусом данного решения является то, что длина петли геотермального контура должна быть очень большой.
      К примеру, для отопления дома с площадью 220 м², потребуется расположить трубы на площади 600 м², поэтому, проведение работ возможно только при условии большой придомовой территории.

    Вертикальный теплообменник – вариант установки теплового насоса с геотермальными зондами. Требует бурения специальных скважин, глубиной около 200 м и диаметром 150 мм, для расположения зондов. Преимуществом вертикального контура является стабильная высокая температура на глубине скважин +18°С. В качестве минусов можно выделить высокую стоимость работ.

    Установка геотермального ТН требует проведения глобальных земляных работ, что ограничивает популярность систем отопления данного типа.

    Насос типа вода-вода

    Существует альтернативный вариант отопления дома геотермальной энергией, взятой из грунтовых вод. Работы также проводят двумя способами:

      Теплообменник на дне водоема – одно из популярных решений. Не требует капитальных затрат и проведения масштабных земляных работ. Трубы укладывают на дно, рядом расположенного озера или пруда, а при условии получения соответствующего разрешения, речки. Минимальным требованием для установки является расположение водоема не более 100 м от отапливаемого помещения, глубина не менее 3 м.

  • Использование артезианской скважины – принцип работы основан на том, что воду прямо качают из скважины, прогоняя через тепловой насос. Такое решение требует изготовления второй скважины, для сброса воды и поддержания равновесия, для предотвращения изменения давления в пластах.
  • Как подобрать геотермальный насос

    Главным требованием при геотермальном отоплении с использованием теплового насоса, является определение соответствия условий для установки станции. Не в каждом доме удастся установить ГН. Ограничения применимости в основном связаны с рельефом, глубиной пролегания грунтовых вод, общей площади приусадебного хозяйства, наличием расположенного рядом со зданием водоема и т.д.

    Предварительные расчеты и проектную документацию составляет специалист компании, продающей отопительное оборудование. При выборе подходящей модели, обращают внимание на следующие параметры:

      СОР – под сокращением, принятым во многих странах мира, скрывается соотношение, указывающее на рентабельность установки, а точнее производительность насоса по отношению к затраченному электричеству. Так, СОР 3 означает, что на каждый 1кВт электроэнергии, необходимой для поддержания работы устройства, будет произведено 3 кВт тепловой энергии.

    Укладка геотермального контура – производительность прямо влияет на общую площадь уложенного в грунт трубопровода. Для предварительных расчетов, будет достаточно умножить общую отапливаемую площадь на 3. Полученный результат укажет на то, какие размеры участка будут необходимы для укладки контура.

  • Функциональные возможности. Дом, оборудованный геотермальным тепловым насосом, отапливается зимой, и при условии приобретения дополнительного оборудования, охлаждается летом. Чтобы это стало возможным, дополнительно устанавливаются сплит системы.
  • КПД геотермального насоса намного выше, чем у любого другого отопительного оборудования. Своевременные модели имеют коэффициент СОР равный пяти. Для сравнения, электрокотел вырабатывает на каждый 1 кВт, 0.09-0.99 кВт тепловой энергии.

    Как рассчитать мощность ГН

    ГН выдает температуру теплоносителя равную 65°С, при максимальной нагрузке. Оптимальными считаются параметры, находящиеся в пределах 45-50°С. ТН подключается к низкотемпературным системам отопления. Коэффициент мощности и другие параметры, рассчитываются с учетом особенностей эксплуатации:

      Мощность теплонасоса – на 1 квадратный метр, понадобится тепловая мощность, равная 0,7 кВт. Для обогрева частного дома в 200 м², выбирают установку с производительностью 14 кВт.

    Расчет геотермального контура – при вычислениях принимают во внимание влажность и тип грунта, а также средний уровень точки промерзания. В среднем, для получения 1кВт тепловой энергии, потребуется 40-60 метров водяного контура, уложенного в грунт.

  • Расходы электроэнергии – геотермальный насос работает за счет электричества, необходимого для создания принудительной циркуляции теплоносителя в первичном водяном контуре, а также нагнетания давления фреона в компрессоре. Чем выше СОР, тем меньше будут затраты электроэнергии и выше окупаемость теплонасоса.
  • Производители геотермальных насосов

    При выборе отопительной геотермальной техники, немаловажную роль играет подбор производителя. Если учитывать качество и надежность оборудования, то лучшие тепловые насосы выпускают немецкие производители.

    Стабильно хорошие отзывы заслуживают модели, предлагаемые следующими производителями:

      Viessmann – продукция компании отличается высокой производительностью. В частности, насосы Vitocal 300-G/-W Pro способны развивать мощность до 290 кВт. Максимальный нагрев теплоносителя 60°С. Станции Viessmann укомплектовываются интегрированными накопительными емкостями, для обеспечения нужд ГВС, различной вместимостью.

    Buderus – в отличие от предыдущего производителя, компания делает акцент на бытовых приборах отопления, мощностью до 60 кВт. Подача теплоносителя с температурой 65°С. Шум от геотермального насоса Buderus всего 40 дБ, благодаря специально сконструированной изоляции. Можно спокойно эксплуатировать теплонасос непосредственно в доме, рядом с жилыми помещениями.

    Vaillant – компания предлагает все типы геотермальных насосов. Отдельно разработаны серии для укладки водяного коллектора на дно водоема, использования геотермальных зондов и укладки контура ниже точки промерзания. Теплоноситель на выходе прогревается до 60°С. Максимальная производительность 46 кВт. Недостатком продукции компании Vaillant является скромный выбор ГН, что, впрочем, компенсируется высоким качеством продукции.

  • Stiebel Eltron – продукция компании предназначена для частичной и полной компенсации потребностей жилых помещений в тепле. Все модели интегрируются в систему вентиляции и в летнее время года работают на охлаждение. Максимальная производительность ГН Stiebel Eltron 98 кВт.
  • Ассортимент выпускаемой продукции огромен. При выборе лучше ориентироваться на мнение специалиста.

    Стоимость геотермального оборудования и монтажа

    Чтобы подсчитать, во сколько обойдется приобретение и установка геотермальной отопительной системы, учитывают следующие четыре фактора:

      Приобретение станции – себестоимость ГН зависит от производителя и мощности модуля. Средняя стоимость варьируется от 80 до 1200 тыс. руб. и выше. Дороже всего обойдется оборудование немецких производителей, но переплаты в данном случае оправданы, по причине высокого качества и надежности.

    Обустройство участка геотермальных полей или земляные работы – дешевле всего обходится горизонтальный геотермальный контур теплового насоса. При желании, можно самостоятельно вырыть траншеи, по предварительно подготовленному проекту, что уменьшит стоимость работ практически вдвое.

    Монтаж геотермального насоса – прокладка трубопровода и подключение его к емкости с испарителем, правильно выполнит только квалифицированный специалист. На монтажных работах лучше не экономить и предоставить профессионалам выполнение работ.

    Преимущества и недостатки геотермальных отопительных насосов

    Отзывы о геотермальных насосах теплоснабжения и реальный опыт эксплуатации, помогают выявить сильные и слабые стороны оборудования. К недостаткам геотермального насоса можно отнести:

      Высокие нормативные требования к геотермальным тепловым насосам, а точнее прилегающей территории. Станция не может быть установлена в любой местности. Первоначально потребуется провести геологическую разведку, и определить, будет ли целесообразно использовать ГН или лучше выбрать другой источник тепловой энергии.

    Читайте также:
    Принтер по дереву для печати: лазерный 3d, видео-инструкция по монтажу своими руками, фото и цена

    Стоимость – не каждый хозяин частного дома, в состоянии выложить за приобретение и установку насосного оборудования порядка 350-500 тыс. руб. Некоторые банки предлагают льготное кредитование на приобретение оборудования, также можно воспользоваться государственной помощью (если она предусмотрена).

  • Изменения в геотермальном контуре в первый год эксплуатации – уложенные трубы проседают, что приводит к уменьшению скорости циркуляции пропиленгликоля. В результате, снижаются показатели теплоотдачи и характеристики СОР. Поэтому, через год эксплуатации проводится аудит первичного водяного контура, что часто неудобно и приводит к дополнительным расходам на облагораживание территории.
  • Вот практически и все недостатки геотермального насоса. Теплонасос, в противовес этому, обладает достоинствами, перевешивающими существующие минусы:

      Экономичность – сравнение затрат на газ, твердое топливо и на электричество, расходуемые традиционными котлами отопления, покажет, что ГН является более выгодным. Причем, экономическая выгода настолько существенна, что позволяет окупить затраты на покупку и установку модуля уже через 4-5 лет.

    Функциональность – существует возможность использования геотермального оборудования для отопления и кондиционирования помещений. Если учесть, что в летнее время года теплонасос будет продолжать работать как кондиционер и обеспечивать дополнительную экономию электроэнергии, становятся очевидным, целесообразность приобретения.

  • Длительный срок эксплуатации – сам теплонасос сможет проработать и 100 лет, но отдельные узлы потребуют ремонта уже через 30-50 лет. После проведения ремонтных работ, можно будет продолжить использовать оборудование в обычных условиях эксплуатации.
  • Геотермальные насосы в странах ЕС устанавливают не только в жилых помещениях. Некоторые крупные промышленные центры, отапливают с помощью тепла, отдаваемого грунтом или водой. Большой опыт эксплуатации показывает экономическую выгоду и целесообразность вложения средств в тепловые геотермальные установки.

    Разбираемся насколько выгодно геотермальное отопление частного дома

    Выбирая вариант обогрева индивидуального жилья или производственных построек, обращают внимание в первую очередь на доступность и стоимость топлива в месте строительства. Важно представлять размеры финансовых и трудовых вложений в период монтажа оборудования, эксплуатационные расходы, а также эффективность будущей системы в конкретных условиях эксплуатации.

    Геотермальное отопление частного дома преподносится маркетологами в качестве универсального решения для любых случаев, что не совсем верно. В статье собран материал, помогающий понять, что и по какой цене предлагают застройщику, а также сравнить этот вид отопления с другими способами.

    Читайте в статье

    Преимущества и недостатки геотермальных тепловых насосов

    Опыта массовой и, главное, продолжительной эксплуатации тепловых насосов в России немного. Пользователи разделились на два противоположных лагеря: на тех, кто хвалит систему отопления (сюда же стоит отнести продавцов и монтажников) и противников, столкнувшихся с трудностями эксплуатации или недобросовестными компаниями-установщиками.

    На основании отзывов можно сделать выводы о достоинствах и недостатках тепловых насосов.

    Преимущества Недостатки
    Низкий расход электроэнергии, на 1 кВт потраченной электроэнергии получают 2,5-3,5 кВт (в реальности) и до 7 кВт (в идеале) тепловой мощности Большие финансовые вложения на этапе проектирования и монтажа
    Возможность установки в любой местности – в зависимости от региона применяют грунтовые, водяные или воздушные контуры забора внешнего тепла Необходимость дополнительных источников тепла при температуре воздуха ниже 25°С
    Реверсивность – система работает на обогрев зимой и охлаждение летом Опасность для почвенных микроорганизмов – грунт охлаждается, гибнут бактерии, снижается плодородие почвы
    Универсальность – можно использовать для отопления дома, нагрева воды для повседневных нужд или воды в бассейне Системы эффективны только при оборудовании «тёплого пола» – теплоноситель греется до 50°С, этого недостаточно для эффективной работы радиаторов
    Долговечность – зарубежный опыт говорит о 30-50 годах эксплуатации до замены оборудования Низкая эффективность при небольшом разбросе температур теплоносителя во внешнем контуре и среде прокладки (грунт, вода)
    Минимальные затраты на техническое обслуживание
    Полная автоматизация процесса
    Экологическая безопасность – нет вредных выбросов
    Для работы потребуется только наличие электричества

    Достоинства проявляются при качественном проектировании, верном выборе оборудования, соблюдении правил монтажа.

    Устройство и принцип работы геотермального отопления

    Наглядно увидеть как работает тепловой насос можно на примере бытового холодильника или сплит-системы. Если дотронуться до радиатора на тыльной стороне холодильника, он окажется горячим, в то же время стенки морозильной камеры будут охлаждены.

    В похожем режиме работают разнесённые в пространстве кондиционеры – внутренний блок охлаждён и служит источником прохлады, наружный блок сбрасывает на улицу тепло. В реверсном режиме сплит-система греет воздух в помещении.

    Схематический принцип работы теплового насоса.

    В тепловом насосе, предназначенном для отопления, внешний блок забирает тепло из воздуха, грунта или воды, для чего прокладывают внешние контуры из труб. В водяных контурах возможна перекачка воды, вход и выход в этом случае располагают на расстоянии около 20 метров. После преобразований в центральном блоке тепло поступает в дом.

    Альтернативный способ организации посредством перекачки грунтовых вод.

    В состав геотермальной системы отопления входят:

    1. Непосредственно тепловой насос с компрессором, испарителем, конденсатором и дроссельным клапаном.
    2. Контур низкотемпературного тепла.
    3. Контуры обогрева помещений (водяной или жидкостный) и подогрева воды.

    В основе работы заложены работы Николя Леонара Сади Карно, одного из видных учёных, изучавших термодинамику на стадии становления этой науки. Подробно алгоритм работы заключается в следующем:

    1. Теплоноситель внешнего контура перекачивается по трубам. За время движения жидкость нагревается на несколько градусов от тепла земли, воды или воздуха.
    2. Внешний контур проходит через теплообменник-испаритель, где нагревает хладагент, например, фреон, который испаряется. Кроме того, хладагент поступает в испаритель через капиллярное отверстие и резко расширяется, что также способствует нагреванию.
    3. Компрессор сжимает нагретый хладагент, ещё больше повышая температуру фреона.
    4. Горячий сжатый хладагент поступает в конденсатор, где, охлаждаясь и превращаясь из пара в жидкость, отдаёт тепло теплоносителю системы отопления, циркулирующему уже по трубам отопления. Другой вариант — нагревает воздух, который распределяется по помещениям.
    5. Далее хладагент вновь поступает в испаритель, где нагревается новой порцией теплоносителя, циркулирующего во внешнем контуре.

    Часто задают вопрос: откуда получается КПД тепловых насосов 300-700%. Это происходит благодаря тому, что теплоноситель внешнего контура выходит из насоса имея температуру от -15°C до +7 о С и нагревается грунтом (водой, воздухом) до на 2-8°С, т.е. «забирает» часть энергии из внешних источников. Хладагент в насосе испаряется не только за счёт работы компрессора, но и из-за поступившего извне тепла.

    Важно! Точные цифры температуры теплоносителя внешнего контура могут меняться у разного оборудования, но, чтобы тепловой насос выполнял свои функции, теплоноситель должен нагреваться хотя бы на 2-4 градуса. В противном случае экономический эффект отсутствует или даже получается отрицательным.

    Способы организации геотермального отопления

    Геотермальные системы отопления классифицируют по нескольким признакам:

    1. Комбинации среды прокладки внешнего контура и виду теплоносителя внутреннего контура.
    2. Способу прокладки тепловых зондов (контуров) в грунте или воде – вертикальный или горизонтальный.

    Первый параметр указан производителем оборудования. Например, обычная сплит-система будет относиться к классу «воздух-воздух», забирать тепло из воздуха улицы и отдавать в помещения.

    Насос «грунт-вода» забирает тепло земли и греет жидкий теплоноситель системы отопления. Параметр «вода-воздух» подразумевает конструкторское решение, при котором внешний контур расположен в воде (внешнем водоёме или в скважине), а тепло по дому распределяется потоками нагретого воздуха.

    Выбор того или иного способа зависит от условий эксплуатации.

    Обоснование выбора класса оборудования

    Один из главных параметров на который обращают внимание при покупке тепловых насосов – это коэффициент трансформации теплоты COP (coefficient of performance). Он может быть равен от 1 до 7, иными словами: 1 кВт электроэнергии преобразуется в 1-7 кВт тепловой мощности. Важно понимать, что реальный коэффициент геотермальных тепловых насосов будет меньше заявленного в паспорте, так как для работы потребуются затраты электроэнергии на перекачку теплоносителя по внешнему контуру, и чем он длиннее, тем больше будут эти затраты.

    Читайте также:
    Программы для проектирования и расчёта систем вентиляции

    На практике и по отзывам пользователей следует рассчитывать на СОР равный 2,5-3,2 если вести учёт в течение всего периода эксплуатации – температура грунта и воды постепенно меняется в зависимости от климатических условий.

    В большей степени выбор среды, откуда будет забираться тепло, зависит от климатических условий региона и геологических особенностей места строительства.

    Еще один альтернативный способ организации геотермального отопления с использованием водоема.

    Оборудование с внешним контуром, расположенным в воде, выбирают, если:

    • водоём является частным прудом;
    • глубина скважины до подземных вод не превышает 20 метров (в некоторых регионах до 45 метров).

    Если эти условия не соблюдаются, то необходима лицензия на право пользования недрами. Если при проверке контролирующими органами лицензии не окажется, то оборудование придётся остановить и заплатить штраф до нескольких миллионов рублей.

    Кроме того, важным является расстояние от водоёма до дома, если оно свыше 25-30 метров, то эффективность резко снижается – потребуется дополнительные расходы на перекачку теплоносителя и утепление трубопровода.

    Размещение внешнего контура в грунте на своём участке не запрещается, но следует правильно выбрать способ расположения труб – горизонтальный или вертикальный.

    Горизонтальный и вертикальный внешние контуры.

    В зависимости от состава грунта, с одного метра горизонтальной трубы можно снимать до 50 Вт тепловой мощности. Однако это справедливо для глинистых грунтов. Песчаники и суглинки могут отдать от 12 до 25 Вт/м, а для теплового насоса мощностью 10 кВт может понадобиться внешний горизонтальный контур длиной от 200 до 700 м. Для его размещения понадобится участок 450 м 2 . Размещение труб кольцами не эффективно, так как теплоноситель охлаждает грунт вокруг себя и соседние кольца просто не будут эффективно прогреваться.

    Важно! В течение зимы грунт постепенно вымораживается, становится холоднее и СОР падает к февралю-марту, так как теплоноситель уже меньше нагревается.

    По отзывам владельцев участков в месте, где размещён горизонтальный контур теплового насоса через несколько лет эксплуатации меняется структура грунта, хуже растут овощные растения и землю используют только под газон. Не сажают в таких местах и деревья с мощной корневой системой, которая может разрушить трубы.

    Оптимальной считают вертикальную систему проколов или скважин, в которых размещают несколько контуров, расходящихся в разные стороны. На большой глубине температура земли стабильнее и мало зависит от климата. Для выводов труб оборудуют колодец, в котором размещают коллекторы. Скважины бурят под углом к горизонту и располагают по окружности – так снижается влияние каждого контура друг на друга.

    Можно ли сделать все своими руками

    Собрать геотермальную систему отопления своими руками в теории можно, но на практике сделать это трудно, если не невозможно.

    Понадобится большой объём земляных работ при горизонтальной укладке контура. Трубы размещают минимум на 0,5 метра ниже уровня промерзания грунта, т.е. всего придётся копать землю на глубину 2-2,5 м. Грунт необходимо где-то складировать и размещать на время прокладки труб.

    Бурение скважин общей глубиной до 200 м потребует специального дорогостоящего оборудования, сделать такой объём работы своими руками невозможно. Самостоятельно приступать к укладке контура целесообразно только при наличии в пользовании технических средств: экскаватора, самосвала, бульдозера или буровой установки.

    Экономическое обоснование использования геотермальных тепловых насосов

    Выбор того или иного способа отопления дома зависит от многих параметров:

    • технической возможности и стоимости подключения к сетям поставки энергоресурсов (газ, электричество);
    • стоимости оборудования и монтажных работ;
    • сроков эксплуатации установленного оборудования;
    • эксплуатационных расходов на энергоресурсы и техническое обслуживание системы в течение срока эксплуатации.

    В статье сравним затраты на отопление дома площадью в 200 м 2 на протяжении 10 лет эксплуатации разными способами: магистральным газом, электричеством, газом из индивидуального газгольдера, тепловым насосом, питаемым электроэнергией.

    Изначальные и эксплуатационные расходы

    В смету на изготовление полной системы отопления, организованной с помощью теплового насоса входит цена:

    • насоса необходимой мощности;
    • труб внешнего контура;
    • дополнительного оборудования – циркуляционного насоса, расширительного и накопительного баков;
    • труб для обустройства «тёплого пола» или воздуховодов для распределения тепла по помещениям;
    • запорной и регулирующей аппаратуры;
    • монтажных и пусконаладочных работ.

    Мощность насоса должна на 10–15% превышать тепловые потери дома через стены, пол потолок, двери и окна. В среднем считают, что для Средней Полосы дом 200 м 2 потребует установки насоса мощностью 13 кВт для отопления и ещё около 700 Вт уйдёт на подготовку горячей воды для санитарных нужд. Таким образом, необходимо приобрести тепловой насос мощностью 14 кВт.

    Так выглядит типичная «котельная» с тепловым насосом.

    Цена такого оборудования у разных производителей колеблется от 210 000 рублей в базовой до 500 000 рублей в премиум комплектации.

    Длина труб коллектора будет зависеть от структуры почвы:

    • сухой песок отдаёт 10 Вт/м длины трубы диаметром 25 мм;
    • сухая глина – 20 Вт/м;
    • влажная глина – 25 Вт/м;
    • глина с большим содержанием грунтовых вод – до 35 Вт/м.

    Таким образом, длина контура составит от 400 до 1 200 м.

    Вертикальные контуры выгоднее по теплоотдаче:

    • осадочные породы отдают 20 Вт/м;
    • каменистая почва и влажные осадочные породы с грунтовыми водами – 50 Вт/м;
    • подземные воды – до 70 Вт/м.

    Исходя из показателей, общая глубина скважин составит от 200 до 700 м, что в 2 раза меньше, чем при горизонтальном расположении. В грунте с хорошей теплоотдачей для дома 200 м 2 бурят 3 скважины длиной по 75 метров.

    Для обеспечения необходимой мощности циркуляционный насос должен обеспечивать прокачку теплоносителя через контур в объёме 5 м 3 /час.

    В первичном контуре теплонасосной станции устанавливают расширительный бак, ёмкость которого должна составлять 10% от объёма теплоносителя. Его можно узнать, рассчитав внутренний объём труб. Например, 1 м трубы с внутренним диаметром 32 мм содержит 0,8 литра жидкости.

    В обратной ветке контура устанавливают накопительный бак объёмом 10-20 литров на 1 кВт мощности насоса, т.е. в нашем случае для насоса 14 кВт потребуется ёмкость объёмом 140-280 литров. Необходимость бака обусловлена тем, что насос без накопительного бака будет работать непрерывно – это снижает срок эксплуатации.

    Как на самом деле выбрать самые дешевые на рынке радиаторы отопления

    Узнать стоимость оснащения дома тепловым насосом без учёта внутренней разводки можно с помощью калькуляторов, представленных на сайтах производителей оборудования и монтажных организаций. Цены колеблются для разных регионов. Готовые системы под ключ (со стоимостью работ и оборудования) специализированные организации готовы изготовить по цене от 670 тысяч в регионах до 1,5 млн. рублей в Московской области.

    Точных данных о сроках эксплуатации систем в России пока нет, но зарубежный опыт показывает, что в среднем тепловые насосы «грунт-вода» служат до замены около 50 лет.

    Сравнение стоимости отопления для разных энергоносителей

    Средние данные по стоимости оборудования дома и расходам на отопление дома площадью 200 м 2 системами с разными энергоносителями приведены в таблице ниже.

    Тепловой насос «грунт-вода» Магистральный газ Электричество Газгольдер
    Стоимость оборудования и монтажа, тыс. руб. 570-1 500 200-300 (с подключением) 20-60 180-250
    Срок эксплуатации До 50 До 50 с заменой котла через 10 лет 7-10 30
    Амортизационные расходы, тыс. руб. в год 15-30 5-8 4-6 8-10
    Эксплуатационные расходы за год, тыс. руб. 20-40* 30-40 100-200* 50
    Общие расходы в отопительный период с учётом амортизации, тыс. руб. 40-70 45-55 110–210* 60-70

    * — взят тариф на электроэнергию в среднем 2,52 кВт/ч в сельской местности и 4,8 в городских условиях.

    В таблице приведены максимальный расход денежных средств на отопление. В реальной практике затраты несколько ниже, так как в течение отопительного периода случаются продолжительные оттепели, когда оборудование работает в режиме 40-50% мощности.

    Читайте также:
    Сколько будет стоить подвесной потолок из гипсокартона

    Геотермальные тепловые насосы набирают всё большую популярность в нашей стране. Принимая решение оборудовать дом именно этой системой, нельзя слепо верить обещанием продавцов. У этого типа оборудования есть недостатки, а расчёт и монтаж следует поручить известным компаниям, изучив максимальное количество отзывов об их работе.

    Тепловой насос отопит дом. Опыт FORUMHOUSE

    Выбираете энергоэффективные решения?

    Обратите внимание на геотермальные тепловые насосы FORUMHOUSE

    Геотермальный тепловой насос EU (старт/стоп)

    Геотермальный тепловой насос IQ (псевдоинвертор)

    Геотермальный тепловой насос IQ (инвертор)

    В нашем климате отопительный сезон длится больше полугодия, а летом приходится тратиться на системы кондиционирования. Хорошо, если дом находится на «освоенных» территориях, где подведен газ. А как быть, если магистрали нет, и в обозримом будущем не предвидится. В последние годы все большее распространение получают тепловые насосы, как альтернатива классическим видам отопительных приборов. И среди пользователей FORUMHOUSE есть владельцы такого оборудования, готовые поделиться полезным опытом.

    • Принцип работы тепловых насосов
    • Отопительный контур
    • Достоинства и недостатки тепловых насосов
    • Секреты самоделкиных

    Как это работает

    Основные узлы агрегата: компрессор, теплообменник, циркуляционный насос, автоматика, подающий контур. Насос способен забирать тепло из трех источников.

    • Воздух.
    • Вода.
    • Грунт.

    Судя по веткам обсуждений, востребованы у нас два варианта – вода и грунт. Это обусловлено ограничениями по температуре – источник должен быть плюсовым. Расположение запитывающего контура бывает горизонтальным или вертикальным. В первом случае магистраль укладывают ниже уровня промерзания – от 1,5 метров глубины. Или на дно водоема, там даже по сильным морозам – до + 4⁰С. Длина контура зависит от габаритов отапливаемого помещения и мощности насоса. Во втором бурят скважины под зонды, средняя глубина – 50–70 метров. Пиастров А В, один из форумчан и владелец теплового насоса, так охарактеризовал вертикальную систему.

    Тепло собирают геотермические зонды – закольцованный трубопровод, по которому циркулирует этиленгликоль. Они опускаются в скважины 50–70 метров глубины. Это наружный контур, а количество скважин зависит от мощности теплового насоса. Для домика в 100 метров квадратурой потребуется два зонда – две скважины.

    Отопительный контур

    Тепловой насос, в отличие от котлов на газу, угле или электричестве, нагревает носитель в среднем до 40⁰C. Это оптимальная температура, при которой и износ оборудования минимальный, и потребление электричества. Для обычных радиаторов таких показателей недостаточно. Поэтому с тепловым насосом обычно используют не трубы и батареи, а теплый пол. Он при таком нагреве теплоносителя эффективнее. Только шаг между трубами должен быть меньше. Стоит учесть, что теплый пол создает ограничения по выбору мебели и сушит воздух. Потребуется дополнительное увлажнение. Летом полы могут работать на охлаждение.

    Достоинства и недостатки

    Кроме того, нет зависимости от газовщиков и хождений по инстанциям для согласования. Да и требования к котельной не такие строгие. После пуска затраты на эксплуатацию минимальные. Оплачивается только электричество, насос средней мощности потребляет около 4 кВт в час. Современные модели импульсные, работают не беспрерывно, а включаются при необходимости. Это снижает количество рабочих часов в сезон и затраты энергии.

    Главный недостаток геотермального отопления – цена вопроса, даже китайский или отечественный агрегат, не говоря о европейских брендах, стоит несколько тысяч евро. Вместе с обустройством внешнего контура и монтажом, удовольствие выльется в сотни тысяч рублей. Согласно расчетам экспертов и владельцев, насос окупается за несколько лет. Работает он на дармовом источнике, по сравнению со стоимостью тонны угля или куба дров, экономия значительная. Но далеко не у каждого есть лишних полмиллиона на оборудование и пусконаладку.

    Если недалеко от участка водоем, получается значительно дешевле, отпадают траты на дорогостоящее бурение.

    Действующие скважины тоже оптимизируют процесс, становясь источником тепла. Это подтверждает форумчанин дет марос из Усть-Каменогорска. Он работает на предприятии, выпускающем тепловые насосы и оказывающем услуги по их установке. Поэтому досконально разбирается в ситуации и на вопрос участника ветки, нужны ли ему зонды, если на участке есть скважины, ответил исчерпывающе.

    Зачем вам заморачиваться с зондами, если воды хватает. Будете гонять из одной скважины в другую через ТН. С зондами возимся, когда на участке нет воды или столб маленький, потребности не покрывает. Для насоса мощностью 10 кВт нужен объем в 3 куба.

    Секреты самоделкиных

    Но самая большая экономия получается, когда тепловой насос собирают своими руками. Ведущий узел – компрессор, берут от мощных кондиционеров и сплит-систем, технические параметры у них сходные. Теплообменники продаются готовые, но некоторые умельцы и их умудряются паять из медных труб. В качестве хладагента – фреон, его тоже продают в баллонах. Контроллеры, реле, стабилизаторы, все элементы по отдельности обойдутся вполовину дешевле, чем в готовом комплекте.

    Чаще всего самоделки организуют над прудами или когда уже есть действующая скважина. Из-за того, что львиная доля расходов приходится именно на земляные работы, и экономия максимальная на них же.

    Умелец aparat2, из Риги, сам собрал геотермальное отопление и выложил об этом фоторепортаж, с подробным описанием всех операций.

    Собрал ТН из двух однофазных компрессоров по 24000 БТУ (7 кв. ч. по холоду). Получился каскад, тепловой мощностью 16-18 киловатт, при расходе электричества около 4,5 кВт в час. Выбрал два компрессора, чтобы были токи меньше, запускать буду не одновременно. А пока обжит только второй этаж и хватит одного компрессора. Да и, поэкспериментировав на одном, потом усовершенствую вторую конструкцию.

    Также форумчанин решил не тратиться на готовые теплообменники пластинчатого типа. Они требовательны к водоподготовке, да и стоят весомо. Самодельный обменник он совместил с аккумулятором, чтобы повысить отдачу. Получилась рабочая установка в разы дешевле покупной.

    Тем не менее, тепловые насосы– это альтернативный вариант, когда нет газа и большие площади отопления. Даже при самостоятельной сборке системы затраты на комплектующие солидные. Ближе изучить тему можно на ветке по тепловым насосам, там масса полезных советов, форумчане делятся опытом, обсуждают различные модели. Пошаговая инструкция от aparat2 поможет разобраться со сборкой. А варианты отопления большого дома без газа в ролике – наглядный пример. Для владельцев деревянных домов – видео об особенностях прокладки трубопроводов.

    Занимался пару лет этой темой,
    У ТН очень узкая сфера использования, большинство плюсов высосано менеджерами из пальцев, У ТН высокая цена и плохой сервис. Если вы не кулибин-сантехник-холодильщик по совместительству, то одно обслуживание вам перекроет всю экономию.

    Любая сплит система, работающая на тепло – тот же тепловой насос воздух-воздух. Хорошие сплиты с функцией оттайки исправно греют до -5С.
    Если есть деньги, то проще не заморачиваться и поставить газгольдер. Тогда есть шанс, что про сервис системы отопления вы будете вспоминать всего пару-тройку раз в год!

    2.5-3! Сейчас даже появились более дорогие сплит-системы на R32 с СОР более 6 (!), паспортно (!) работающие на обогрев до -30С! Но пока речь про R410.. А Пиковые морозы ниже -15С можно закрыть резервными источниками – ТТ или эл.котёл! Морозных дней ниже -15С даже у меня в Сибири по факту замеров последние 3 года – не более 1,5мес, при общей продолжительности отопит.сезона до 7мес, плюс изредка бывают достаточно холодные летние периоды! Главное брать сплит-системы от качественных производителей, с гарантией не менее 3лет! О выборе моделей тоже много сказано в ветках!
    Но пойдём дальше!:) ведь тема про грунтовые ТН! Так вот, если наружный блок инверторного кондиционера поставить в подвал/подпол (!), то он будет всю зиму питаться теплом грунтового контура экранированного пятном застройки дома, заодно частично полезно утилизируются (регенирируются) теплопотери надподвального перекрытия, которые обычно просто рассеиваются! В этом случае они не теряются а возвращаются в дом! Наряду с несколькими пользователями проведшими такой эксперимент (или подобный – есть чел подающий на наружник воздух через воздуховоды зарытые в грунт возле дома!) убедился в высокой эффективности метода: всю прошлую зиму я лично отапливал в Сибири свой дом 130м2 2эт бюджетным (из сетей) инверторным сплитом 18бту с наружником в подвале! Минимальная t грунта была в январе-феврале 2016 – до минус 14С! Ниже физически не могла опуститься! С потеплением на улице грунт в подвале с лагом в 1-3 суток также повышается по t , т.е.никакой обычно приписываемой страхами вечной мерзлоты нет! К концу марта в подвале как и среднесуточно на улице – минус 5С! Никаких рисков для фундамента нет, потому что сплит имеет вполне скромную мощность и очень плавно и равномерно (обдув) охлаждает подвал! В моём случае площадь подвального грунта около 50м2! Затраты эл-ва за сезон 6мес

    Читайте также:
    Пионы: описание сортов, посадка семенами, уход в открытом грунте и в квартире

    5000Квтч! Потратил за зиму всего

    12т.р. Но оговорюсь – держал в доме минимум – 16С, т.к. ремонт больше не нужно и мощность сплита для дома 130м2 слегка маловата, 24бту хватило бы! Ещё моменты: надо утеплить цоколь, и для большей эффективности и отмостку! Мой эксперимент был только при утеплении цоколя! Заглубление грунта в подполье у меня

    0,8-1,0м, фундамент ленточный армированный на песч.подушке глубиной

    1,0-1,1м! Мой дом очень хорошо утеплён: в стенах 200мм эппс, кровля – 200мм – кам.вата, надподвальное перекрытие – 150мм эппс, перекрытия – брус-сосна (для такого решения лучше брать лиственницу или делать бетон, иначе при оттайке грунта весной будет конденсат, либо принудительно продувать подвал мощным вентилятором), 20м2 – остекления 3стекла, наружка 6мм, плюс i-стекло.
    Обращаю внимание: хорошое утепление дома – это вопрос #1! затем уже игры с ТН любого вида, иначе не натопишься!

    Геотермальный тепловой насос своими руками для отопления дома: устройство, проектирование, самостоятельная сборка

    Организовать отопление и горячее водоснабжение частного дома можно разными способами, например, подключиться к коммуникациям центрального газообеспечения или перевести греющие системы на потребление электроэнергии. Согласны?

    А можно собрать геотермальный тепловой насос своими руками и эффективно использовать тепло земли для создания комфортных жизненных условий. Безусловно, это довольно трудоемкий процесс, но для тех, кто хоть немного разбирается в технике, это не составит большого труда.

    В нашей статье речь пойдет о принципах работы и видах геотермальных установок. Мы расскажем, как из подручных материалов самостоятельно соорудить тепловой насос. Кроме того, в статье вы найдете советы экспертов по выбору геоагрегатов. А размещенные видеоролики раскроют секреты монтажа и принципы работы геотермальных насосов.

    Как работает тепловой геоагрегат?

    Алгоритм работы геотермального теплового насоса построен на передаче тепла от источника с низким потенциалом тепловой энергии к теплоносителю. Земля здесь играет роль радиатора летом и является активным источником тепла в зимний сезон.

    Разница температур грунта помогает повысить общую эффективность системы и способствует снижению фактических эксплуатационных расходов.

    На практике в трубопровод, размещенный в грунте, поступает действующий теплоноситель и нагревается там на несколько градусов. Потом состав переходит в теплообменный узел (или испаритель) и перебрасывает накопленную тепловую энергию на внутренний системный контур.

    Хладагент, работающий во внешнем контуре, прогревается в испарителе, преобразуется в газ и попадает в компрессор. Там он сжимается под влиянием высокого давления и становится еще горячее.

    Раскаленный газ переходит в конденсационное устройство и отдает тепловую энергию рабочему теплоносителю внутренней системы, отвечающей за отопление дома. По окончании процесса хладагент, лишившийся тепла, возвращается в начальную точку в жидком состоянии.

    Какими бывают геотермальные установки?

    Геотермальные теплонасосы отличаются друг от друга по виду теплоносителя на внутреннем и внешнем контурах конструкции. Энергию устройства получают из грунта, воды (грунтовые воды либо открытый природный водоем) или воздуха.

    Внутри жилого помещения тепловой ресурс применяется для отопления комнат, подогрева воды и кондиционирования воздуха. В зависимости от сочетания используемых элементов и функций происходит классификация систем на типы: «земля-вода», «вода-вода» и «воздух-вода».

    Вариант #1. Сборка по технологии «земля-вода»

    Насос «земля-вода» – один из самых эффективных вариантов альтернативного отопления для жилых помещений. Принцип его действия сводится к отбору при помощи зондов или коллекторов тепловой энергии из грунта и передачи ее в домашнюю водяную систему отопления.

    Помогает реализовать технологию специальная установка, состоящая из геотермального теплообменника, размещенного ниже глубины фактического промерзания почвы, и непосредственно тепловой насос, функционирующий как холодильник, только наоборот (обратный цикл Карно).

    Как работает устройство

    Установка «земля-вода», отапливающая жилые помещения за счет возобновляемого тепла, производимого почвой, действует по следующему алгоритму:

    1. Рабочая жидкость (рассол или антифриз), перемещающаяся по геотермальному контуру, принимает температуру почвы и посредством насоса передается в теплообменник – испаритель. Там она отдает собранное тепло фреону, а сама, став холоднее на 2-5°С, возвращается в исходную точку.
    2. Обогащенный тепловой энергией фреон испаряется и, приняв газообразное состояние, поступает в компрессорную установку. Там температура газа повышается за счет сжатия и образуется конденсат.
    3. Тепловая энергия передается теплоносителю в домашней отопительной системе, а фреон снова принимает жидкую форму. Его давление падает после прохода через расширительный клапан системы и хладагент возвращается обратно в испаритель, чтобы набрать очередную порцию ресурса.

    В результате этой процедуры объем тепловой энергии, взятой у почвы и переданной в отопительную систему жилого дома, более чем в 4 раза превышает количество электричества, затраченного для обеспечения корректной работы компрессорной установки, циркулярного насоса и управляющего блока.

    Дополнительным бонусом можно назвать и то, что система имеет возможность работать в обратную сторону, то есть на охлаждение. Правда, потеря эффективности доходит до 20%, но это считается оправданным, учитывая высокую греющую способность оборудования.

    Варианты размещения систем «земля-вода»

    Для создания наружного контура системы «земля-вода» используют полимерные трубы высокой прочности, имеющие хорошие эксплуатационные характеристики. Размещают их горизонтально, укладывая на дно котлована способом, напоминающим обустройство коммуникаций для комплексов «теплый пол».

    При установке используется площадь из расчета 25-50 кв. м на каждый отдельный киловатт мощности монтируемого насоса. Глубину котлована выбирают ниже границы промерзания, а точные размеры и шаг укладки труб определяют дополнительным расчетом.

    Территории, на которых обустроены коммуникации геотремальных систем «земля-вода», под сельскохозяйственные нужды уже не используют. На них можно разбить красивый травяной газон или клумбу с цветущими однолетниками.

    Вертикальный монтаж гораздо более проблематичен и влечет за собой использование профессиональной техники. На участке при помощи буровой установки сверлят скважину глубиной от 20 до 150 м, в нее опускают специальный геотермальный зонд и подключают его к насосу, подающему рабочую жидкость в домашнюю отопительную систему.

    Зондовые трубы, отходящие от пробуренных скважин, входят в коллекторный колодец. От него к тепловому насосу идут 2 магистральные линии (подающая ресурс и обратная), снабженные утеплительным покрытием. Диаметр магистрали зависит от общего объема системы и помещения, которое требуется отопить. Иногда параметры достигают 160 мм.

    За счет того, что на глубине температура грунта всегда выше и устойчивей благодаря воздействию земного ядра, вертикальный способ укладки греющей системы признан максимально эффективным. Он демонстрирует высокий уровень КПД и надежно работает в течение многих лет, не давая сбоев и поломок.

    Вариант #2. Особенности теплонасосов «вода-вода»

    Геотермальная система «вода-вода» использует в работе тепловую энергию водного ресурса. Это является возможным потому, что на большой глубине температура воды, как и грунта, остается довольно высокой и круглогодично сохраняет стабильные постоянные показатели.

    Принципиальной конструкционной разницы между теплонасосом «грунт-вода» и «вода-вода» нет. Но самых меньших финансовых и трудовых затрат требует комплекс, обустроенный на базе открытого водоема. Для монтажа не нужны масштабные буровые мероприятия.

    Трубный материал с теплоносителем просто оснащают грузом, погружают в воду и посредством соединительных коммуникаций подключают к домашней отопительной системе.

    Читайте также:
    Плитка для печи в жилом доме

    Однако, такой вариант возможен лишь в том случае, когда земельный участок вплотную прилегает к воде и все коммуникационные части системы находятся под контролем хозяев. Если к открытому водоему доступа нет, используют потенциал грунтовых вод.

    Правда, это влечет за собой серьезные земельные работы и сооружение сложных конструкций, например, дополнительного колодца, предназначенного для сброса проходящей через теплообменный узел воды.

    Обычно установки типа «вода-вода» монтируют там, где нет возможности подключить центральные коммуникации или использовать иные виды теплоносителей.

    Специалисты утверждают, что альтернативное отопление такого типа исключительно эффективно в современных постройках, имеющих минимальный показатель теплопотерь.

    Если дом хорошо утеплен, защищен от сквозняков, сырости и проникновения морозного воздуха или построен с применением современных теплоизоляционных технологий, стоимость системы отопления существенно снижается из-за открывшейся возможности приобрести насосное оборудование гораздо меньшей мощности.

    Вариант #3. Обустройство систем «воздух-вода»

    Теплонасос «воздух-вода» использует для работы самый доступный, неограниченный и возобновляемый природный энергетический ресурс – воздух. Функционирует оборудование посредством вентиляторов и испарителей, объединенных в единый комплекс.

    Наибольшую эффективность проявляет при температуре до -15°C. При более агрессивных показателях теряет существенную часть мощности.

    Агрегат исключительно удобен тем, что не требует от владельцев частного дома наличия спецтехники для монтажа и проведения сложных работ по установке.

    Не нуждается в выемке земли, бурении скважин и прочих трудоемких мероприятиях. Легко монтируется и не занимает большого количества места. Может корректно функционировать, располагаясь на крыше жилого помещения.

    К главным плюсам оборудования относится практически бесшумная работа и возможность повторного использования тепла, вышедшего из обогреваемого помещения в форме отработанного воздуха, воды, газа, дыма и пр.

    Обслуживание системы владельцы осуществляют самостоятельно:

    • чистят вентиляторные лопасти и защитные решетки на испарительной установке от пыли, мелкого мусора и листьев;
    • смазывают компрессор специальным составом, указанным в инструкции производителем;
    • меняют масло в силовых узлах (вентилятор, компрессор) с определенной периодичностью;
    • проверяют целостность силового кабеля питания и медного трубопровода, по которому хладагент циркулирует в системе.

    Помимо этих действий изготовители насосного оборудования настоятельно советуют клиентам контролировать состояние тепловых датчиков, отражающих функционирование блока управления.

    Их необходимо протирать, аккуратно удаляя с поверхности пыль и масляные пятна. Это продлит «жизнь» системы воздух-воздух и сделает процесс эксплуатации более простым и комфортным.

    Как сделать агрегат своими руками?

    Независимо от того, какой вариант ресурса (земля, вода или воздух) выбран для отопления, для корректного функционирования системы понадобится насос.

    Это устройство состоит из таких элементов, как:

    • компрессорный узел (промежуточный элемент комплекса);
    • испаритель, передающий низкопотенциальную энергию теплоносителю;
    • дроссельный клапан, через который хладагент находит обратную дорогу в испаритель;
    • конденсатор, где фреон отдает тепловую энергию и охлаждается до изначальной температуры.

    Можно приобрести целостную систему у производителя, но это обойдется в приличную сумму. Когда свободных денег под рукой нет, стоит сделать теплонасос своими руками из имеющихся в распоряжении деталей и в случае надобности докупить недостающие запчасти.

    Когда решение о собственноручном изготовлении теплового насоса принято, нужно обязательно проверить состояние имеющихся в доме электрической проводки и электросчетчика.

    Если эти элементы изношенные и старые, необходимо просмотреть все участки, обнаружить возможные неисправности и устранить их еще до начала работ. Тогда система сразу после запуска будет безупречно работать и не побеспокоит хозяев короткими замыканиями, возгоранием проводки и выбиванием пробок.

    Способ #1. Сборка из холодильника

    Для сборки теплонасоса своими руками со старого холодильника снимают размещенный сзади змеевик. Эту деталь используют как конденсатор и помещают в высокопрочную емкость, устойчивую к агрессивным температурам. На нее крепят исправно работающий компрессор, а в качестве испарителя используют простую пластиковую бочку.

    Подготовленные элементы соединяют между собой, а потом созданный агрегат посредством полимерных труб подключают к отопительной системе и приступают к эксплуатации оборудования.

    Пошаговый инструктаж по сборке теплонасоса из холодильника описан в этой статье.

    Способ #2. Теплонасос из кондиционера

    Для того чтобы сделать теплонасос, кондиционер модифицируют и проводят перепланировку некоторых основных узлов. Сначала наружный и внутренний блоки меняют местами.

    Испаритель, отвечающий за передачу низкопотенциального тепла, дополнительно не ставят, так как он имеется во внутреннем блоке агрегата, а передающий тепловую энергию конденсатор стоит во внешнем блоке. В качестве теплоносителя подходят как воздух, так и вода.

    Если этот вариант монтажа не удобен, конденсатор устанавливают в отдельный резервуар, предназначенный для корректного теплообмена между греющим ресурсом и теплоносителем.

    Саму систему снабжают четырехходовым клапаном. Для этой работы обычно приглашают специалиста, имеющего профессиональные навыки и опыт проведения мероприятий такого рода.

    В третьем варианте кондиционер полностью разбирают на составные детали, а потом из них комплектуют насос по традиционной общепринятой схеме: испаритель, компрессор, конденсатор. Готовый прибор присоединяют к обогревающему дом оборудованию и приступают к использованию.

    На сайте есть серия статей по изготовлению тепловых насосов своими руками, советуем ознакомиться:

    Советы по выбору системы

    Монтаж оборудования типа «земля-вода» обходится дороже всех остальных вариантов, потому что требует глубинных земляных работ при вертикальном расположении оборудования или большой свободной площади участка при горизонтальной прокладке коммуникаций.

    Эти параметры ограничивают использование системы и существенно снижают ее привлекательность.

    Установка насоса «вода-вода» тоже имеет некоторые ограничения. Если рядом есть доступный водоем, можно разместить систему в нем. Отсутствие открытых вод повлечет за собой бурение скважин и отводных колодцев, что тоже стоит не дешево.

    Насос «воздух-вода» не представляет проблем с установкой, и может корректно работать даже в многоквартирных домах, но при суровых зимах с низкими температурными показателями его эффективность падает и для ее поддержки требуется параллельный источник энергии.

    Однако, обустройство геотермального отопления в итоге окупает свои затраты и начинает вырабатывать бесплатный ресурс, позволяя владельцам жить в максимально удобных, приятных и комфортных условиях, не тратя при этом больших средств на коммунальные услуги.

    Выводы и полезное видео по теме

    В ролике наглядно показано, как в большом доме из газосиликатного блока обустроена отопительная система на основе геотермального теплового оборудования «воздух-вода». Раскрыты некоторые интересные нюансы относительно монтажа оборудования и озвучены реальные цифры коммунальных платежей за месяц.

    Как работает оборудование «земля-вода». Подробное описание от специалиста по установке геотермальных тепловых котлов, рекомендации и полезные советы для домашних мастеров от профессионала своего дела.

    Своими впечатлениями о тепловом геотермальном насосе делится реальный пользователь оборудования.

    Профессиональный слесарь рассказывает, как в домашних условиях изготовить тепловой насос на основе мощного компрессора и трубчатых теплообменных деталей. Подробная инструкция в пошаговом режиме.

    Геотермальный насос для отопления частного домовладения – удачный способ создания комфортных жизненных условий даже там, где недоступны централизованные коммуникационные системы и более привычные источники энергетического ресурса.

    Выбор системы зависит от территориального расположения недвижимости и финансовых возможностей хозяев.

    Имеете опыт изготовления геотермального теплового насоса? Пожалуйста, поделитесь информацией с нашими читателями, предложите свой вариант сборки. Оставлять комментарии и прикреплять фотографии своих самоделок можно в форме, расположенной ниже.

    Отопление дома геотермальным насосом

    Идея использовать внутреннее тепло Земли для отопления совсем не нова и неоригинальна. И хотя далеко не у всех поблизости есть горячие подземные воды, ее все-таки может использовать каждый. Такую возможность предоставляют геотермальные тепловые насосы. Они извлекают из земли и воды запасы накопленной в них солнечной энергии, и проедают ее в отопительный контур дома.

    Теория разработана еще в 1852 знаменитым лордом Кельвином. Реализовал ее он же в 1855 году, и успешно использовал не протяжении многих лет. Несмотря на высокую эффективность, геотермальные тепловые насосы для отопления не находили широкого применения вплоть до конца 20 века. Тогда в 70-х годах в Европе стали активно развивать энергосберегающие технологии, и одним из направлений были тепловые насосы.

    Наружный блок геотермального теплового насоса выглядит так. И что приятно, так это то, что работать они могут и на отопление и на охлаждение

    Читайте также:
    Проекты деревянных домов: особенности проектирования, чертежи, фото

    В чем привлекательность этой идеи: затратив 1 кВт электричества, вы можете получить от 2 кВт до 6 кВт тепла. И это не противоречит законам теплотехники. Просто эта установка тратит энергию не на производство тепловой энергии, а на ее перенос.

    Такая разная эффективность — от 2 до 6 — зависит не только от конструктивных особенностей установок, но и от условий эксплуатации. Самая высокая производительность у тепловых насосов может быть достигнута при температуре в отопительном контуре в районе +35 o C. Потому идеально эти установки стыкуются с водяными теплыми полами.

    Есть, конечно, и установки, которые нагревают воду в отопительном контуре до 50-65 o C, но, во-первых, стоят они больше, Во-вторых, лучшую эффективность показывают все равно в заданном диапазоне.

    Принцип действия геотермального теплонасоса

    Тепло у нас под ногами есть в любой среде. Его количество разное в разных регионах, но оно есть повсеместно. И геотермальный тепловой насос отбирает это тепло у природных источников и передает его нагревательному контуру.

    Что может стать источником тепла? Любая среда вне помещения, температура которой зимой выше 0 o C. Это близлежащий непромерзающий водоем, речка, даже колодец с достаточным количеством воды. Есть тепло и в грунте: ниже точки промерзания температура всегда положительная.

    Источником тепла может быть любая среда с температурой выше нуля зимой

    Принцип работы геотермального теплового насоса состоит в том, что тепло от источников переносится в установку, где преобразовывается и передается в отопительный контур.

    Если говорить чуть подробнее, то все происходит так. В относительно теплой среде находится трубопровод с теплоносителем большой протяженности. Трубопровод чаще всего замкнутый, его движение обеспечивается насосом. Теплоноситель нагревается до температуры среды. Обычно это +5 o C или чуть выше. Проходя по первому теплообменнику-испарителю, он отдает тепло находящемуся во втором контуре хладагенту.

    Устройство теплового насоса: это три контура с теплоносителями, компрессор и испаритель, сбросный клапан

    Хладагент — вещество, которое кипеть начинает при температуре выше -5 o C. В большинстве установок используют фреон. До включения установки он находится в жидком состоянии. Потом, по мере поступления тепла от термальных источников, его температура поднимается. Фреон начинает испаряться, переходит в газообразное состояние. Этот газ уже имеет температуру порядка +5 o C. Он поступает в компрессор, где его сжимают. При сжатии выделяется большое количество тепла, и из компрессора газ уже выходит с температурой от 35 o C до 65 o C. Он поступает в еще один теплообменник — конденсатор, где отдает тепловую энергию теплоносителю, который идет в контур отопления.

    Сам фреон, отдав большую часть тепла, частично остывает, но все еще находится в газообразном состоянии при повышенном давлении. Он поступает на сбросный клапан, где давление резко падает, он резко охлаждается и сжижается. После чего снова поступает в испаритель, где начинается новый цикл преобразования.

    Источники тепла и способы доставки энергии

    Как уже говорилось, источник тепла для теплового насоса — любой объект, имеющий зимой положительную температуру. Большая часть из них — низкопотенциальные, то есть количество тепловой энергии заключено в них этого незначительное. Но это не значит, что использовать эту энергию нельзя. Можно, только придется делать для этого большой контур для ее сбора. И в этом состоит сложность устройства геотермальных тепловых насосов: кроме значительных затрат на оборудование, требуются немалые средства на строительство внешнего контура сбора тепла.

    Тепловой насос с теплыми полами — идеальная совместимость

    Сразу можно сказать, что четкого определения того, какие источники тепла являются геотермальными, а какие нет, вы не найдете. Некоторые считают что геотермальные — это те источники, которые находятся в грунте. Другие говорят, что вода — также подходит под эту категорию: она часто находится под землей, и та, что находится в открытых водоемах, также когда-то протекала в грунте. Тем более что способ переноса тепла одинаков: при помощи циркулирующего по контуру теплоносителя и подавляющее большинство современных агрегатов работать может с любым из этих источников.

    Рассмотрим все источники тепла, которые могут подходить под эту категорию. И начнем с самого простого, требующего минимум затрат на обустройство.

    Даже зимой подо льдом вода имеет достаточно высокую (относительно воздуха) температуру: от +5 o C до +7 o C. Вся задача состоит в том, чтобы эту энергию перенести к тепловому насосу. Для этого в водоем укладывают полимерные трубы, заполненные незамерзающей жидкостью (чаще всего это соляной раствор, иногда антифриз). В среднем считается, что с метра трубопровода, уложенного в водоеме, можно получить 30 Вт тепла. Исходя из этого, считают протяженность труб. Например, вам для обеспечения теплом дома нужно 12 кВт тепла. Получаем: 12000 Вт : 30 Вт/м = 400 м. Вот столько труб нужно будет уложить в водоем.

    Энергию у воды можно не только в открытом водоеме. Если близко подпочвенные воды можно использовать скважины

    Есть другой вариант. Он приемлем, если потребность в тепле не очень большая, а на участке имеется колодец с хорошим дебетом (высокая скорость притока воды). Понадобиться вторая скважина для сброса воды, но никакого длиннющего контура. Только не путайте! Если в колодце стоит 3 кольца воды, это совсем не значит, что дебет у него хороший. Это значит, что грунтовые воды близко. Но скорость поступления воды (а дебет — это именно она) может быть при этом небольшой.

    Нужно будет подавать в дом из колодца необходимое количество «теплой» воды, а остывшую отводить во вторую скважину. Обязателен в этом случае расчет потребности воды и определение параметров циркуляционного насоса.

    Грунт

    Всем известно, что ниже точки промерзания температура почвы выше 0 o C. Это значит, что тепло оттуда можно перекачать для отопления дома. Делают это двумя способами: при помощи горизонтального коллектора или вертикального.

    Горизонтальные геотермальные контура

    Для устройства горизонтального геотермального поля требуется большая площадь: от 200 м 2 и больше. На всей этой площади приходится снимать грунт на 30-50 см ниже точки промерзания грунта. На практике это 1,2-2 метра в зависимости от региона. Ниже копать не стоит. В грунте сохраняется энергия, накопленная с лета, а слишком глубоко опустившись можно потерять значительную часть тепла: туда оно просто не проникло.

    Так выглядит площадка под горизонтальный геотермальный зонд

    Необходимая площадь зависит от потребности в тепле и типа грунта: в одних можно забрать 30 Вт с одного метра, в других 60-75 Вт. Самые значительные запасы энергии есть во влажных грунтах с близко расположенными грунтовыми водами. Если возле вашего дома именно такие — вам повезло. Если нет, тоже ничего страшного, просто площадь потребуется больше (и труб тоже). Расстояние между двумя соседними витками трубы 1-1,5 метра.

    Для уменьшения занимаемой площади можно использовать спиральную укладку. Это когда контур из труб выкладывается не «змейкой» или «улиткой», а спиралями, которые находят одна на другую. Площади требуются несколько меньшие, но все-таки значительные.

    Большие пространства есть далеко не возле каждого дома. Тем более что дальнейшее их использование ограничено: нельзя высаживать растения с мощной корневой системой (деревья) или ставить капительные строения. Если вы не можете выделить такой участок под сбор тепла, или не хотите выполнять подобный объем земельных работ, можно использовать вертикальные скважины.

    Чтобы уменьшить площадь под геотермальное поле можно использовать скрученные в спирали трубы

    Недостатки горизонтального поля:

    • Большой объем земляных работ.
    • Летом режим пассивного охлаждения недоступен.
    • Постепенное понижение температуры к концу отопительного периода (и это тоже нужно учитывать при расчете длины трубопровода).
    • После завершения укладки труб нельзя сразу приступать к ландшафтным или другим работам: нужно ждать усадки грунта. А это не менее года.
    Читайте также:
    Осушитель воздуха для бассейна канальный
    Вертикальные зонды

    Ниже 20 метров от поверхности температура грунта повышается. На этой глубине она вне зависимости от погоды и времени года всегда стабильна: от 10 o C и выше (в зависимости от региона). Для того чтобы добраться до этого тепла делают скважины для тепловых насосов. Они обычно дают больше тепла, потому требуется не такое значительное их количество.

    Но количество энергии, которою можно «выкачать» сильно зависит от типа грунта. Меньше всего дают песчаные почвы: 30 Вт/м, много энергии содержится в граните — до 75 Вт/м. Потому очень может разниться и длина требуемой скважины.

    Сколько тепла можно «снять» с одного метра скважины в грунте

    Бурение скважин — далеко не самое дешевое удовольствие. Особенно на большие глубины: для этих целей используется мощная техника, стоимость работы которой велика. Но не обязательно делать одну скважину. Можно пробурить несколько на меньшую глубину, важно только чтобы суммарная их протяженность совпадала с рассчитанной. В этом случае под геотермальное поле занимается меньший участок, но он тоже значительный. К тому же требуется организовать коллектор для сбора потоков от всех зондов, а это еще дополнительное оборудование, и земляные работы (трубы от одной скважины к другой прокладывают ниже уровня промерзания).

    Вертикальный зонд — скважина приличной глубины. Но такое бурение очень дорого, так что можно сделать некоторое количество более коротких скважин

    Недостатки вертикальных зондов:

    • Высокая стоимость бурения.
    • Значительные площади под геотермальное поле: минимальное расстояние между скважинами — 8 метров.
    • При большой глубине скважин есть ежегодное снижение температуры. Через несколько лет процесс сильно замедляется, но тепла со временем поступает меньше. Это тоже нужно учитывать при расчетах.
    Кластерное бурение

    Что делать, если и под вертикальные зонды у вас места не хватает? Есть так называемое кластерное бурение. Это когда от общего центра скважины расходятся в разные стороны лучами. Для этой технологии требуется выделить участок в 4 м 2 . В этом квадрате снимается грунт и устраивается своеобразный колодец, в который потом заводят трубы от зондов. В принципе, этот центр можно устроить даже в подвале дома.

    Для такой системы зондов, конечно, требуется специальная техника, но она не очень мощная: глубина бурения средняя, высокая производительность ни к чему. Эта технология, как и многие другие, разработана в Европе. Там обращают внимание не только на безопасность, но и на сохранение природы и бережное отношение к частным владениям. Потому некоторые установки для кластерного бурения имеют резиновые гусеницы и практически не повреждают придомовую территорию. В целостности остаются и газоны, и дорожки.

    В пробуренные скважины опускают заполненные теплоносителем трубы. Тут опять таки-есть варианты. По одной технологии используются, как и в других внешних контурах, полимерные трубы, а в других — металлические. Металл применяется особый, коррозионно-стойкий. Его строк эксплуатации 50-70 лет. А чем он лучше? У него выше теплопроводность, то есть тепло переносится эффективнее. Это значит, что с одного метра скважины, «снять» можно больше тепла. Потому и скважины в этом случае должны быть менее длинными.

    Кластерное бурение экономит землю

    Работу установки кластерного бурения вы увидите в видео. Тут же можно оценить размеры геотермального насоса для дома (площадь 250 м 2 ).

    Производители и отзывы

    В Европе геотермальные тепловые насосы для отопления окупают себя за несколько лет. Но у них стоимость отопления гораздо выше, как и цена на энергоносители. Для нашей же страны, потраченные на установку 10 тыс. — 15 тыс. долларов, возвращаться будут годами, если не десятилетиями. Это не значит, что оно не окупится вовсе (хотя может случиться и так), но очень нескоро. И, тем не менее, устанавливать геотермальный тепловой насос из Китая не стоит. Хоть они и дешевле, и порой значительно, но у них нет ни запчастей, ни сервисов, ни гарантийных обязательств. Если что-то с техникой случится, вы останетесь сами со своей проблемой.

    Какие установки стоит приобретать? В первую очередь это немецкие. В Германии самые строгие законы, нормирующие строительные материалы и оборудование для дома, и очень жесткая сертификация. Если установки допущены к эксплуатации в Германии, то они точно безопасны и качественны. Примеров тому множество в любой области строительства. То самое, знаменитое «немецкое качество» присуще и геотермальным насосам для дома.

    Схема организации системы отопления дома с использованием тепловых насосов

    Кроме немецких агрегатов хорошие отзывы имеют еще многие другие европейские производители. Часть из них производит подобную аппаратуру уже более 50 лет, так что технологии давно выверены и отлажены. К примеру, геотермальные тепловые насосы Nibe в Швеции устанавливались не только в квартирах и частных домах. Термальный насос Nibe был смонтирован даже на крупной свиноводческой ферме, где от его тепла греются поросята. В этом варианте, кстати, зонды закладывались не в грунт и не в скважины. Они отбирали тепло у навозной жижи: проложили наружный контур вдоль бортов сточных каналов. Вот уж точно бесплатный источник тепла. Владелец фермы очень доволен: его вложения окупились за 1,5 года.

    В геотермальных тепловых насосах Daikin применяется инверторное управление, что позволяет снизить затраты электроэнергии еще на 20% по отношению к аналогичным агрегатам обычного типа.

    В шведских геотермальных насосах Danfoss собраны сразу три запатентованные технологии. Две из них позволяют при меньших затратах быстрее нагревать воду для ГВС и достигать более высоких температур в контуре отопления. Еще одна руководит работой циркуляционных насосов, оптимизируя их скорость. Это позволяет добиться максимальной производительности.

    Итоги

    Геотермальные насосы — не самая дешевая затея. Если у вас есть возможность подключить газ, и эта затея обойдется вам меньше, чем 15 000 долларов, подключайте газ. Если такой возможности нет или сумма получается больше — целесообразно установить тепловой насос. И лучше геотермальный. Он хоть и требует больших вложений на старте, но работает стабильнее и показывает большую производительность. Сумма вложений — очень приблизительная и зависит от конкретных условий. Но эти устройства тем и отличаются, что проект и расчет геотермального теплового насоса — вещь сугубо индивидуальная и считается под каждый проект. Даже на двух соседних участках условия (и сумма) могут значительно отличаться.

    5 комментариев

    Я думаю, что будущее за такими агрегатами. Люди будут стараться искать участки (например ИЖС), где не будет поборов коттеджных поселков или садоводств за коммунальные услуги, либо «услуг » управляющих компаний, которые включают в платежку все подряд, доводя размер платежа просто до абсурдного…
    Кроме того, люди будут стараться минимизировать свои издержки по воде, электричеству.
    Данный агрегат минимизирует затраты на отопление. Очень актуально

    К сожалению данные системы значительно сложнее, чем подключение газа… Однако есть и преимущества — безопасность и долговечность… Думаю данные системы могут быть наиболее востребованы в малоэтажном многоквартирном строительстве при проблематичности подключения газа… Лично меня уже давно интересуют комплексные решения по энерго, водо и теплоснабжению частных домов…

    В последнее время геотермальные системы сильно подешевели, много российских производителей. Если нет магистрального газа — однозначно система стоящая, я уже 4 года живу с геотермальным тепловым насосом.

    Здравствуйте Вы довольны как работать мы тоже хотим купить гиотермальни топливной насос какой фирмы Вы рекомендуете.

    Зачем вообще нужен насос! Если просто извлекать тепло земли, закладываем в землю трубу диаметром 100 мм метров 100-120 на глубину 2 метра и с помощью естественного притока получаем чистый воздух в дом температурой 5-7 градусов. Вот и вся польза! Всё остальное требует затрат! А так зимой в доме 7 градусов, представляете!

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: